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ABSTRACT 

Prestack depth migration, which can both handle dipping reflectors and lateral ve- 
locity variations, is a robust method for imaging complex structures. In order to process 
data by this method, one often needs to have a more accurate velocity model than may 
be obtained from simple velocity analysis methods, such as normal moveout. 

On the other hand, prestack depth migration itself is an attractive tool for doing 
velocity analysis because of its high sensitivity to the velocity model. Two approaches 
to migration velocity analysis have become prominent: depth-focusing analysis (DFA) 
and residual-curvature analysis (RCA). So far, the formulas used in both approaches 
for updating velocity are derived under the assumptions of horizontal reflectors, lateral 
velocity homogeneity, or small offset. Therefore, those conventional approaches lack 
sufficient computational efficiency and accuracy when a velocity distribution has strong, 
lateral variations. 

This thesis addresses the development of a general, quantitative representation be- 
tween the imaged depths and migration velocity. Based on ray theory, I have found 
that the migration process can be described by using the so-called imaging equations. 
From this viewpoint, I have studied relationships between the residual moveout and the 
error of migration velocity in a general context. For a medium with weak lateral veloc- 
ity variations, I have proved that the residual velocity can be estimated by hyperbolic 
residual moveout and no iteration is required. To handle lateral velocity variations, I 
used a perturbation method to derive an analytical formula to iteratively update the 
velocity from residual moveout. In my derivation, I impose no limitation on offset, dip, 
or velocity distribution as long as the velocity perturbation is sufficiently small. My 
formula estimates the update in velocity by computing a derivative function of imaged 
depths with respect to velocity in a general background medium context. This formula 
is more accurate than conventional formulas based on hyperbolic residual moveout when 
the medium has strongly lateral velocity variations; therefore, it is a major contribution 
of this thesis. Based on this formula, I revise the RCA method for doing velocity analysis 
in complex structural media. In addition, with help of the imaging equations, I analyse 
properties in a common image gather (CIG), discuss the sensitivity of migration-based 
velocity analysis, and show what factors affect the sensitivity. 

The theory and formulas developed here are available both for the 2-D case and for 
the 3-D case. For converted waves and anisotropic media, I also offer some suggestions 
on how to develop corresponding formulas. 

The theory and methodology in this thesis have been tested on synthetic data (in- 
cluding the Marmousi data) and on physical-tank data that are recorded in a scaled earth 
model. 
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Chapter 1 

INTRODUCTION 

Structural imaging is an essential process in seismic exploration. A successful imple- 
mentation of this process relies on knowledge of background parameters for propagation 
of data into the earth. Among these parameters, velocity is a critical one because of its 
coherent relation with the dynamic characteristics of reflection signals. Therefore, ve- 
locity estimation has become one of the most important tasks in exploration seismology. 
Velocity analysis is the process of estimating background velocities from measurements of 
moveout or stacking power. In general, there are three ways for doing velocity analysis: 
normal moveout, dip moveout and prestack migration. 

Normal moveout (NMO) is the most basic method for determining velocities from 
seismic data. However, this method assumes horizontal reflectors and lateral velocity 
homogeneity. Dip-moveout (DMO) improves on NMO processing by properly accom- 
modating dipping reflectors, but still cannot accommodate lateral velocity variations. 
Compared to these two methods, prestack migration provides a powerful tool for doing 
velocity analysis because of its high sensitivity to the velocity error and its ability to 
handle both reflector dips and lateral velocity variations. 

1.1    Paper Review 

Two approaches to migration velocity analysis have been developed: depth-focusing 
analysis (DFA) and residual-curvature analysis (RCA). Depth-focusing analysis is based 
on using stacking power to measure velocity error. Residual-curvature analysis is based 
on using residual moveout to measure velocity error. Here, I will give an overview on 
papers of these two approaches. Moreover, I will make a brief comparison between 
migration-based analysis and the reflection tomography approach. 

1.1.1    Depth-focusing analysis 

The idea of velocity analysis based on differential solutions of the scalar wave equa- 
tion was first introduced by Doherty and Claerbout (1974). They used the 15-degree 
finite-difference migration algorithm and worked with single CMP gathers to carry out 
velocity estimation from unstacked seismic data. Yilmaz and Chambers (1984) extended 
the migration-based approach to include more than one CMP gather in each analysis. 
This extension allows proper treatment of dipping events and yields velocity information 
that is more appropriate for use in migration. The migration process was implemented 
by using downward extrapolation in the Fourier transform domain. Jeanot et al. (1986) 
then generalized the method to prestack depth migration in the form of depth-focusing 
analysis by determining the focused depth in the process of downward continuation. Sub- 
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sequently, MacKay and Abma (1989) showed how the DFA data volume could be used to 
form a well-focused seismic section. The new section, the focal-surface image, estimates 
the results of prestack depth migration using the updated velocities. 

The DFA approach is based on these principles: (1) when the migration velocities 
are exact, the two imaging conditions, zero time and zero offset, yield a focused image 
during downward continuation; (2) when the migration velocities are in error, reflected 
energy collapses to zero offset at depths that are inconsistent with the zero-time imaging 
condition; (3) by interpreting the nonzero times at which focusing actually occurs, the 
migration velocities can be updated iteratively. 

A simple formula is used to update velocity in the DFA method: 

Vr = Kn%^, (1.1) 

where Zm is the migration depth, Vm is the migration velocity, 6 is half the depth- 
difference between the focusing and migration depth, and Vr is the updated velocity. The 
formula (1.1) is strictly valid for horizontal reflectors, small offset angles, and constant 
velocities. For a depth-variable velocity, Vr and Vm are viewed as the rms velocities. If 
the effect of steep dip is included, the modified formula (MacKay, 1991) is 

(1.2) 

where 0m is the migrated dip and 6r is the real structural dip. Unfortunately, this formula 
cannot be used to update velocities because 6r is not known. 

MacKay and Abma (1992) discussed how to avoid divergence in the velocity-updating 
procedure, when reflector dips and lateral velocity variations exist. They applied a damp- 
ing factor to the interpreted depth errors. In addition, the interpretation of the focusing 
depth is frequently affected by seismic energy from dipping interfaces, diffractions, and 
noise. To reduce possible ambiguity in the DFA interpretation process, MacKay and 
Abma (1993) introduced a new attribute for determining focusing based on estimates of 
the radius of wavefront curvature. 

The large amount of the ion required for downward continuation may limit use of the 
DFA approach for routine processing. Kim and Gonzalez (1991) presented the Kirchhoff 
integral approach to the downward continuation. The flexibility of the Kirchhoff integral 
allows one to compute only the zero-offset trace at each depth point and to avoid most 
of computation for the downward continuation of unstacked data. 

1.1.2    Residual-curvature analysis 

The formula for updating velocity in the DFA approach is dip-limited, so repeated 
prestack migration is required even for a constant-velocity medium. In comparison, 
residual-curvature analysis (RCA) is an alternative to migration velocity analysis that is 
able to overcome the dip limitations of DFA. 

In the RCA method, the migrated prestack data are sorted into common-image gath- 

2 



ers (CIGs). They have also been called common-receiver gathers (CRGs) or common- 
reflection point gathers (CRPs). In each common-image gather, the migrated data have 
the same imaged horizontal location. Residual-curvature analysis is based on this princi- 
ple; after prestack migration with the correct velocity, the imaged depths in a CIG must 
be the same regardless of offset; otherwise, after prestack migration with an erroneous 
velocity, the imaged depths in a CIG from different offsets will differ from each other; 
the differences of imaged depth in CIGs provide information for updating the velocity 
iteratively. 

Al-Yahya (1989) discussed residual-curvature analysis by iterative shot profile mi- 
gration. He measured the velocity errors by estimating the curvature of residual moveout. 
The residual moveout in a CIG in his paper is represented by 

z2
m = 7V + (7

2 - l)a2, (1.3) 

where a is the offset between the shot and the imaged location, zm is the imaged depth, 
z is the actual depth, and 7 is the ratio of the true rms slowness to the migration rms 
slowness. The derivation of equation (1.3) is based on small offset, horizontal reflectors, 
and laterally invariant velocity. Later, Lee and Zhang (1992) generalized the condition 
of horizontal reflector into small-angle dip by using the dip-corrected residual moveout 
equation, from which equation (1.3) is modified by 

z. 2   _ -.2 J2 = 7V + (y-l)K + (fl-G0)
2), (1.4) 

where a0 is a quantity related to the reflector dip. With the help of this more accurate 
equation, one can implement residual migration to avoid remigration, or reduce the 
number of the number of iterations required to produce a satisfactory image. However, 
Lee and Zhang's approach involves two unknown parameters—the true velocity and the 
reflector dip, at each imaged location, which makes this approach less convenient than 
the determination of one single parameter. 

Residual moveout in common offset migration is relatively independent of reflector 
dip, so common offset migration provides a better approach in residual-velocity analysis 
than common shot migration. Deregowski (1990) realized this advantage of common off- 
set migration over other migration techniques and developed a velocity analysis method 
by using common-offset depth migration. In his approach, the velocity is updated it- 
eratively by using the residual-moveout correction. Liu and Bleistein (1992) derived a 
general residual-moveout representation under the assumption of small offset and proved 
that residual moveout in common offset migration is insensitive to reflector dip for a 
depth-dependent velocity. This conclusion implies the velocity can be corrected without 
a further iteration for a laterally invariant velocity. To handle complex structures, Lan- 
ford and Levander (1993) proposed an RCA method that is based on a layer-stripping 
Kirchhoff algorithm with geometrical ray tracing in heterogeneous media. They assumed 
that the medium is composed of constant-velocity layers and updated velocity along the 
ray path in a way similar to tomographic reconstruction. By using perturbation theory, 
Liu and Bleistein (1994) developed an analytical formulation for residual moveout that 



is valid for any velocity distribution and any subsurface structure. This formulation can 
also be used to analyze the sensitivity of migration velocity analysis. 

1.1.3    Comparison with reflection tomography 

As an alternative to migration velocity analysis, reflection tomography is an impor- 
tant approach to velocity analysis that handles lateral velocity variations for velocity 
estimation. Therefore, it is essential to make a comparison between migration velocity 
analysis and reflection tomography. 

The tomography technique (refraction tomography) has been widely used in Bore- 
hole Geophysics and Vertical Seismic Profile (VSP) to estimate medium velocity based 
on information of the first arrival traveltime. It is called reflection tomography when this 
technique is applied to surface seismic reflection data. In the tomographic approach to 
the inverse problem, the medium velocity is determined by minimizing a misfit function 
that represents the deviation of traveltimes. The formulation in the tomographic ap- 
proach is set up analytically, so one can analyse some aspects of velocity inversion, such 
as stability, resolution and computational efficiency. 

However, there are some difficulties in the present reflection tomographic approach. 
First, picking reflected events from seismic signals in reflection tomography is much more 
difficult than picking the first arrivals in refraction tomography. The events in the unmi- 
grated data are frequently distorted by correlated noise. This problem can be improved 
by picking reflectors in the postmigrated domain (Stork, 1992). Secondly, the inversion 
problem in reflection tomography is very ill-posed. Compared to refraction tomography, 
the raypath coverage in reflection tomography is more sparse and, therefore, uniqueness is 
an issue, with multiple solutions being a possibility. Finally, the construction of raypaths 
(actually, specular raypaths) strongly relies on the reflector position, both on depths and 
on slopes. Although the depths can be included in the inverse problem as a parameter to 
be determined (Stork and Clayton, 1991), generally it is difficult to determine the slopes 
accurately. 

In contrast, migration velocity analysis can use the semblance method to measure 
residual moveouts and pick reflectors in the stacked, migrated domain. In this way, mi- 
gration velocity analysis will give more reliable information for picking. Furthermore, 
with the help of the macro model concept, migration velocity analysis can apply a re- 
cursive procedure to estimate interval velocities. Thus, the computation can be made 
more stable by applying the method to only a few unknowns at each recursion. Finally, 
formulation in migration velocity analysis can be set up analytically by using pertur- 
bation theory which is similar to the analysis done in tomography (Liu and Bleistein, 
1994). The estimate of velocities in this formulation also depends on specular raypaths, 
as in reflection tomography. In contrast, Liu and Bleistein's approach selects the specular 
raypaths, based on the stationary-phase principle that produces the migration imaging, 
instead of on the measurement of reflector slopes. Therefore, this approach is more stable 
and less computationally costly than reflection tomography. 

In summary, both migration velocity analysis and reflection tomography are impor- 
tant methods for handling lateral velocity variation in velocity estimation. The similarity 
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between these two methods allows them to "learn" from each other in order to solve the 
problem of velocity estimation in complex structures. For instance, Liu and Bleistein 
(1994) derived an analytical formula to describe the relation between residual moveout 
and residual velocity, the idea for which was suggested by tomography. On the other 
hand, reflection tomography may improve stability by using the macro model concept. 

1.2    Limitations in Conventional Approaches 

Migration velocity analysis must address two issues to succeed: (1) how to establish 
a criterion for knowing if a migration velocity is acceptable; (2) how to update the ve- 
locity, if it is unacceptable. In DFA, a migration velocity is acceptable if the difference 
between migration depth and focusing depth is zero. In RCA, a migration velocity is 
acceptable if the difference between imaged depths from different offsets is zero. Quanti- 
tatively, these differences can be used to update the velocity in a routine way. To date, a 
variety of updating formulas have been developed. These formulas degrade with increas- 
ing complexity of media (lateral velocity variation and reflector dip), because of rough 
approximations used to estimate velocity. Although iteration generally is helpful in ob- 
taining a more accurate velocity, a good approximation not only reduces the number of 
iterations but also guarantees the convergence. The conventional formulas for updating 
velocity were derived under one or more assumptions as follows: 

(i) lateral velocity homogeneity; 
(ii) small offset; 
(iii) horizontal reflector. 

In MacKay and Abma's DFA approach (1992), all three assumptions are used. In RCA, 
the assumptions vary with migration types. For common-shot migration or common- 
receiver migration, Al-Yahya's formula (1989) used all three assumptions. Lee and Zhang 
(1992) derived a formula that replaces assumption (iii) by the assumption of small dip. 
For common-offset migration, Deregowski's formula (1990) used the first two assump- 
tions. [This statement was verified by Liu and Bleistein (1992).] Both DFA and RCA 
use assumptions (i) and (ii). Under the assumption of a small offset, the residual moveout 
can be approximated by a hyperbola or a parabola. However, this approximation is poor 
when the velocity has an obvious lateral variation. 

Conventional approaches for updating the velocity inspect information at each mid- 
point individually. This information is not reliable when conflicting events exist because 
velocity estimation will depend on which event is used. Furthermore, the conventional 
approaches update the average velocities that are assumed to be equal to the rms veloc- 
ities and then convert rms velocities into interval velocities by the Dix equation or other 
methods. Unfortunately, when the velocity has a lateral anomaly, this kind of average 
velocity may differ significantly from the rms velocity (Lynn and Claerbout, 1982; Toldi, 
1989), which may cause divergence in the velocity-updating procedure. 

Because of such limitations, conventional approaches to velocity analysis encounter 
difficulties in handling complex structures (such as the Marmousi model). To overcome 
these limitations, some geophysicists used a macro-model (layer-stripping) method for 



estimating the interval velocity directly. A macro-model consists of velocities and veloc- 
ity interfaces (subsurfaces). The model is determined by layer-stripping, in a top down 
procedure; the velocity of each layer is updated iteratively by using depth-focusing anal- 
ysis or residual-curvature analysis; the velocity interface is imaged by using the corrected 
velocity. The whole process may be accomplished with interpretation based on geological 
knowledge. So far, the present macro-model method has two significant drawbacks. First, 
the velocity distribution is assumed to be constant in layers. In fact, velocity may vary 
within a layer. Secondly, there has not been an efficient formula for updating velocity, 
which results in inaccuracy and inefficiency in velocity estimates. 

In summary, prestack depth migration is sensitive to the velocity model. Residual 
curvatures in migrated data provide information indicating if the migration velocity is 
correct or not. However, there exist drawbacks in the present formulas for updating 
velocity due to rough approximations used. Therefore, the derivation of a more accurate 
formula is required to handle complex structures. 

1.3    Technical Work in this Thesis 

Migration imaging depends on what velocity is used and, on the other hand, migra- 
tion imaging determines what velocity should be used. Therefore, it is essential to give 
a quantitative description to the relationship between migration imaging and migration 
velocity, especially to the relationship between residual moveout and residual velocity. 

In Chapter 2, I set up the imaging equations which are a kinematic representation of 
migration processes. I address the equivalency of the imaging equations to Snell's Law, 
so these equations also can be applied to converted waves and anisotropic media. The 
imaging equations are the foundation of the velocity analysis formulas derived in Chapter 
4 and Chapter 5. 

In Chapter 3, I analyze image properties at a common image gather based on the 
imaging equations. For constant layered velocity, I derive formulas for the sensitivity of 
velocity analysis and show what factors affect the accuracy of migration velocity analysis. 

In Chapter 4, I derive the residual moveout representations under the assumption 
of small offset. Based on these representations, I define the residual moveout (RMO) 
velocity and show how the RMO velocity is related to the rms velocity. I prove that the 
RMO velocity can be estimated by hyperbolic residual moveout without iteration and it 
is a good approximation of the rms velocity for a medium with weakly lateral velocity 
variations. In addition, I show a failure example on a simple two-layer model where the 
lateral variation is no longer small. 

In Chapter 5, I develop iterative approaches to handle lateral velocity variations. 
Based on the perturbation method, I derive an analytical relationship between the resid- 
ual moveout and residual velocity and discuss some computational techniques for esti- 
mating velocity by using this relationship. My formula estimates the update in velocity 
by computing a derivative function of imaged depths with respect to velocity in a general 
background medium context. This formula is more accurate than conventional ones based 
on hyperbolic residual moveout when the medium has strongly lateral velocity variations. 



In addition, I propose a simple-iteration algorithm as a supplement to the perturbation 
approach. Furthermore, I derive more formulas for the sensitivity of migration velocity 
analysis, which are a development of the formulas in Chapter 3. 

In Chapter 6, I show the application of the iterative method in Chapter 5. The 
computer implementations include simple synthetic data, physical-tank data, and the 
Marmousi data. 

The formulas of velocity analysis in this thesis are derived for 2-D acoustic media as 
those in the papers Liu and Bleistein (1992), Liu and Bleistein (1994), Liu and Bleistein 
(1995). Here, I have partially extended these results to 3-D and I also present suggestions 
on how to extend to converted waves and anisotropic media. 



Chapter 2 

IMAGING EQUATIONS 

Let us assume that seismic waves are generated and recorded in response to a near- 
surface source. The recorded signals will provide information about the underground- 
velocity distribution and reflector geometry. That information is contained in amplitude 
and phase of seismic waves. Under the assumption of high frequency, phase information 
is simplified to traveltime (the WKBJ approximation). Compared to amplitude, travel- 
time information in seismic waves is more reliable. For example, the amplitude in a P-P 
reflection is greatly affected by the existence of shear waves, but the traveltime is much 
less affected. Consequently, studying methods based on traveltime is essential in explo- 
ration seismology. The theory that deals with wave propagation for very high-frequency 
signals is called geometrical optics. Using this tool, Hubral and Krey (1980) did funda- 
mental work for measuring traveltime and estimating the stacking velocity. In this thesis, 
I am also going to utilize this tool for measuring residual moveout and estimating the 
migration velocity. 

Given a reflector and a medium velocity, one can obtain a space-time curve in the 
recorded signals by ray theory. This process is forward modeling. Conversely, given a 
time-space curve and a velocity, one can determine a reflector that generates this space- 
time curve. This process is migration imaging. Furthermore, if there are multichannel 
seismic data, velocity itself also can be determined from the relationship between the 
subsurface imaging and the migration velocity. This process is velocity analysis. 

In this chapter, equations for describing migration imaging will be set up based 
on Snell's Law. These equations are the kinematical representations of the migration 
processes. 

2.1    Mathematical Derivation 

Consider the two dimensional situation. I denote by i a 2-D vector, x = (x,z). 
Let xs = (xs(£),za(€)) be source positions and xr = (xr(£),zr(£)) be receiver positions 
located on the datum surface (not necessarily flat), where £ is a position parameter on the 
surface. For example, in common offset, £ would be the midpoint of a source/receiver 
pair; in common shot, f would be a coordinate labeling the receiver location, that is, 
representing the offset from the fixed source. For any point below the surface, TS(XS,X) 

denotes traveltime for a downgoing wave from x3 to x, and rr(x, xr), denotes traveltime 
for an upgoing wave from x to xr. (See Figure 2.1.) 

Given a reflector, one can compute the total reflection traveltime £(£) by using 

Ta(xs,x)+Tr(x,Xr)=t(t), (2.1) 



*sß) 
datum surface 

reflector 

FIG. 2.1. Reflection geometry for the 2-D case. 

where the reflection point x satisfies Snell's Law, 

dx 
[Vx T3(X3,X) + Vx rr(x,Xr)] -^T = 0. (2.2) 

Equations (2.1) and (2.2) describe the forward modeling process for a given reflec- 
tor, so they are called the modeling equations. On the other hand, the total reflection 
traveltime function t(£) also can be used to determine the reflector position. Notice 
that the reflection point x = (x, z) is dependent on the position £ on the surface. By 
differentiating equation (2.1) with respect to f, I obtain 

drs     drr dx      dt 
- + - + [Vx{r3 + rr)}.- = -. (2.3) 

Using equation (2.2) to eliminate the third term on the left side of equation (2.3), one 
obtains 

dr3(xs,x)     drr(x,xr) _ dt_ 

Thus, each point x = (x, z) of the reflector (therefore, the reflector itself) is determined 
by the simultaneous solution of equations (2.1) and (2.4); i.e., x will satisfy 

Ts(xs,x)+Tr(x,Xr) =*(0, 

drs(xs,x)     drr(x,xr) dt_ 

(2.5) 

(2.6) 

Geometrically, equation (2.6) shows that the reflector is just the envelope of the wave- 
fronts from source/receiver pairs. Therefore, I will call equation (2.6) the envelope con- 
dition. This condition also can be derived by using the stationary-phase method in the 
asymptotic expansion of the Kirchhoff migration operator to reflection data under the 
assumption of high frequency. However, the derivation here is more direct. 

Equations (2.5) and (2.6) are the dual of equations (2.1) and (2.2). They describe 
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the migration imaging process for a given space-time curve, so I call them the imag- 
ing equations. These two equations hold for any kind of seismic acquisition geometry. 
Specifically, let us consider the common offset case with a flat datum surface. 

With no loss of generality, Let zs = zr = 0. The source and receiver positions can 
be described by the horizontal coordinates xs and xr only. Let y denote the midpoint 
and h the half-offset: 

x3 = y-h, xr = y + h. (2.7) 

Then, since £ = y, equations (2.5) and (2.6) become 

Ts(xa,x) + Tr{x,xr)=t(y,h), (2.8) 

^ + ^ = - (29) 
dy      dy      dy 

Equations (2.8) and (2.9) show that if the offset-traveltime curve t(y, h) (therefore, dt/dy) 
is known for given h, one can compute an imaged depth z at each location x. Further- 
more, if a migration velocity equals the true velocity, then the imaged depth z must be 
independent of the offset h; otherwise, for a wrong migration velocity, z will vary with 
the offset h. Consequently, the imaged depths of different offsets provide information for 
determining the velocity, i.e., for velocity analysis. 

Similarly, in the common-shot case, equations (2.5) and (2.6) become 

T3(xs,x) + Tr(x,xr)=t(Z), (2.10) 

drr      dt t 

2.2    Solutions for Constant Velocity 

In particular, suppose that the migration velocity is a constant, c, and the datum 
surface is the z-axis, that is, xs = (xs,0) and xr = (xr,0). Then 

T3(XS, x) = ps/c, Tr(x, xr) = pr/c, (2.12) 

where 
ps = yl{xa - x)2 + z2, pr = ^(xr - x)2 + z2. 

For this case, equation (2.5) and (2.6) become 

ps + Pr = ct((), (2.13) 

dps     dpr        dt 

For the common-offset case, £ = y. Then differentiating here with respect to y and 
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using equation (2.7) yields 

dps     xs — x dpr     xr — x 

dy pa    ' dy pr   ' 

Thus, equations (2.8) and (2.9) are simplified to algebraic forms: 

pa + pr = ct{y,h), (2.15) 

xs — x     xr — x        at 
 1- = c^~- (2-16) 

ps pr dy 

Although the above equations are still not easy to solve, there is an explicit solution 
for the zero offset. In fact, h = 0 implies that xs = xr = y and ps = pr = J(y — x)2 + z1. 
Therefore, equations (2.15) and (2.16) are further simplified to 

2 

y — x        _ c dt 

These two equations yield the solution 

C2     x dt 

y/{y-x)* + z* = lt(y), (2.17) 

(2.18) 

and 

z = «t(y)> i-c-(^\\ 

In general, equations (2.8) and (2.9) cannot be solved explicitly. However, these 
two equations represent a general, quantitative relationship between migration imaging 
and velocity distribution. This relationship will be helpful to derive formulas for velocity 
estimation. 

2.3    3-D Case 

For the 3-D case, the derivations and formulas are completely analogous to the 2-D 
case, so I omit a detailed derivation and just list the main results. 

In the 3-D case, two parameters are required to describe the datum surface: £ = 
(fi>£2)> £i—in-line direction and ^2~~cross-line direction. Parallel to the definitions in 
the 2-D case, I define 

x- (xi,x2,z), 

xs = {xu{Z),X2s{Z),z»{€)), 
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Unless specified otherwise, symbols with index 1 denote the variables along the in-line 
direction and symbols with index 2 denote the variables along the cross-line direction. 
Snell's law is stated as 

dx 
[V» rs(xs,x) + Vx rr(x,xr)] • — = 0,  i = 1, 2. (2.19) 

Now, the imaging equations become 

T3(xs,x)+rr(x,xr) = t(£), (2.20) 

dr.(xttx)     drr(x,xr) _ dt 

Let h = (hi,h2) denote the offset vector and y = (2/1,2/2) denote the midpoint vector. 
In the common-offset case, the imaging equations are 

rs(xs,x) + Tr(x,xr)=t(y,h), (2.22) 

dr.     drr      dt , 
7T + 7T1 = a"'  * = 1. 2. 2.23 %•     öy,      9y, 

For the zero offset and a constant velocity, c, there is an explicit solution for the above 
equations: 

c2 

x = y-jt(y)Vyt(y), 

and 
c ,  ,  L      c2 

* = 2'(v)y1~7,Vy'(y)|2, 

2.4    Summary 

The imaging equations provide a general kinematic representation of migration pro- 
cesses. Some applications of these equations to residual migration have been addressed in 
the literature (Etgen, 1989; Zhang, 1991). In this thesis, I use these equations to formu- 
late algorithms for migration velocity analysis. From the derivation of these equations, it 
is clear and meaningful that the envelope condition (2.6) and Snell's law (2.2) are equiv- 
alent. Because Snell's law is a general statement in reflection seismology, it is concluded 
that the imaging equations hold for converted waves in isotropic or anisotropic media, 
as well. That means, velocity analysis algorithms derived from the imaging equations in 
acoustic media can be generalized to converted waves and anisotropic media. 
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Chapter 3 

IMAGE ANALYSIS IN A CIG 

Velocity analysis must be done on multichannel data. After prestack migration, the 
imaged traces are sorted into common image gathers (CIGs). The imaged depths in CIGs 
provide information on migration velocity. In this chapter, I am going to quantify the 
relationship between the imaged depths and the velocity, based on the imaging equations. 
For simplicity, suppose that the migration velocity is a constant, c, and the datum surface 
is the x-axis. 

By the definition of a CIG, to study images in a CIG, one should fix the horizontal 
coordinate, x, of the reflection point. Then, both the imaged depth z and the source- 
receiver position parameter f can be considered to be functions of the velocity c. That 
is, when the velocity changes, the migration image at a particular trace location changes 
in the vertical direction. Therefore, z is a function of c. Similarly, when one keeps x 
unchanged, the image at x will come from different source-receiver pairs for different 
choices of c. This fact implies, £ is a function of c, too. Differentiating equation (2.13) 
with respect to c, 

dps     dpr 

dz       dz 
dz 
dc 

dps     dpr 

Tc=cdiTc+t^- 

Now, by using equation (2.14) to eliminate dps/d£ and dpr/d(, and using 

dps _ z 
dz      pa' 

dpr _ z 
dz      pT 

I obtain 

Solving for dz/dc, then, 

dz 
(z/ps + z/pr) — = t(£) = (ps + pr)/c. 

dz pspr 

dc       cz 
Introduce angles 9 and 0 as in Figure 3.1. Then, 

>0. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Ps = 
cos(9 — 4>)' 

dz 

Pr = 
cos(0 + <£)' 

dc     c cos(8 — (f>) cos(6 + (f>) 

(3.5) 

(3.6) 

Equation (3.4) shows that the imaged depth increases with the migration velocity 
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FlG. 3.1. Sketch of ray paths. <j> is the dipping angle of the reflector, and 6 is half the 
angle between the source and receiver ray paths. 

for fixed x, no matter what the true medium velocity is. This conclusion is true even for a 
general migration velocity. Further discussion can be found in Appendix A, where I will 
show this result for downward propagating waves and also show that the sign is opposite 
for upgoing waves. Moreover, equation (3.4) allows us to do quantitative analysis, so 
one may find how the degree of the image distortion depends on the magnitude of the 
velocity error and on the reflection geometry. 

Suppose that there are multichannel data. For a given migration velocity, c, common 
image gathers are sorted from the migrated data. Let c* denote the true medium velocity. 
At c = c*, the imaged depths in a CIG must be the same, i.e., z is independent of pairs 
of {xs,xr} for a fixed x. With no loss of generality, I suppose that the source is to the 
left of the receiver, that is, 6 > 0. 

3.1    Common-shot Case 

In the common-shot case, different imaged traces in a CIG correspond to different 
shot positions at a fixed trace location. Thus, our objective here is to describe the 
sensitivity of the velocity analysis technique to changes in shot location over the gather 
of shots that image a particular reflector at the given trace location. From Figure 3.1, I 
have 

xa — x = — ztaxi(9 — (f>). (3.7) 

As in the discussion above, at c = c*, the true velocity, the imaged depth in a CIG is 
independent of shot position; that is, 

dz 
dx. 

= 0. (3.8) 
c=c* 
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If one moves from one shot position to another, i.e., differentiating with respect to xs in 
equation (3.7) and evaluating the result at c = c* yields 

or 

1 = 

d8_ 

dx. 

dO 
cos2 (6 — 4>) dxa 

cos2 (9 - <f>) 

c=c' 

c=c' 

(3.9) 

(3.10) 

By differentiating equation (3.6) with respect to xs and using equations (3.8) and (3.10) 
I find that 

d2< 
dx.dc 

sin 20 

c=c* ccos2(6 + <f>) 
<0. (3.11) 

This tells us that the depth deviation decreases as the source moves right (Axs > 0). 
Now I use (3.11) to obtain error estimates in velocity analysis. From Figure 3.1 I 

find that 
sin 20       cos(0 + 0) 

cos(0 + <f)) = —. 
PT 

(3.12) 
xT     xs ps 

The first equation here is a result of the law of sines; the second arises from the trigonom- 
etry of the right triangle. Furthermore, xT is the specular receiver position corresponding 
to the shot xs and, hence is a function of xs in the CIG. Now equation (3.11) becomes 

d2i 

dx.dc c=c* 

\XS     xr) pr 

C zpa 
(3.13) 

This result and (3.8) can now be used to obtain an approximation for the slope of the 
image position with respect to changes in xs for c near c*. The result is 

8z_ 
dx. 

dz 
dx.. 

+ d2: 
dx. dc 

(c - O = (X, - Xr) Pr(c - C*) 

c=c* C* Zps 
(3.14) 

Suppose that there are two shots, xSl,xS2, and xSl < xS2. Then the difference in imaged 
depths between these two shots in a CIG can be approximated by 

(       \ (       \ ~ dZ(Xso) ( \        I \( \(c~c*)Pr Z{XS2)      Z\XSl) Ä!      ^^        [xS2 — XSl) « [XSo — XTQ) \xS2 — xSl) 
dx. c*z    ps 

(3.15) 

In this equation, xSo = (xS2 + x9l)/2 and xro is the corresponding receiver position 
producing the specular image of interest on the trace at x. Thus, solving for the relative 
velocity error, I find that 

(C_C*)~       {Z{xa2)-Z{xai))z     ps Az z 
(3.16) 

C K-^so       %r0) \-Es2       *^«iJ Pr £\%s \^so       ^ro) Pr 

Here, Az = z(xS2) — z(x3l) and Axa = xS2 - xSl.   This relationship is valid when c 
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approximates c* and the two shots are close for each other. The quotient pa/pr is greater 
than one for the negative dip angle, and less than one for the positive dip angle. 

In equation (3.16) one see the factors that govern the accuracy of velocity analysis, 
(c — c*)/c*, under the assumption that the medium velocity is constant. The accuracy 
of velocity analysis for a CIG of common shot images is best for large source-to-receiver 
offsets, well-separated shot points, and shallower targets, which is well-known but not 
previously quantified. Interestingly, it is also better for reflectors with positive dip (i.e., 
receivers located in the down-dip direction relative to the shot point). 

3.2    Common-offset Case 

In the common-offset case, different imaged traces in a CIG correspond to different 
offsets. Thus, I seek a description of the dependence of the image depth z on the half- 
offset h at a fixed trace location, x. From Figure 3.1, 

2h = xr - xs = z(tan(0 - <j>) + tan(0 + <f>)). (3.17) 

Similar to the derivation of (3.11), I find that 

d2i 

dhdc 
_ 2 sin 20  

^ " C (COS2(0 + <f>) + COS2(0 - <j>))  > °- (3,18) 

This result tells us that the depth deviation increases as the offset increases (Ah > 0). 
By using the relations in equation (3.12), equation (3.18) becomes 

d2x 

c=c* czp2 + p2 

and 

dhdc 

dz      2h 2psp. 

2 h  2 psPr HH (3.19) 

Bk-e.A + t <<-<*>• <3'20> 
Suppose that there are two offsets h\, h2 and hi < h2. Then the difference in imaged 

depths for the two offsets in a CIG is given by the approximation 

z(h2) - z{h{) « ^- (h2 -/»0« 2 fco (h2 - Äi) (C;C*} 2//r
2, (3.21) 

on c z    p3 + pr 

where hQ = (h2 + fci)/2. Thus, 

(c-Q ä (z(ft2)-*(/n)) spg + pg =   Azz   p2 + p2 

c* 2h0(h2-hi)     2pspr       2Ahh0 2pspr 
(3.22) 

where Az = z(h2) — z(h\) and Ah = h2 — h\. This relationship is valid when c approxi- 
mates c* and the two offsets are close for each other. The quotient (p2 + p2,)/2pspr equals 
one for a horizontal reflector and is greater than one for any given dip angle. 
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The relationship (3.22) shows us that the accuracy of velocity analysis for a CIG of 
common offset images is best when the two offsets are large and greatly different from one 
another, and shallower targets, which, again, is well-known but not previously quantified. 
Interestingly, this accuracy deteriorates with increasing dip. 

Note. From the result (3.22), one can conclude that any error of velocity and the 
difference of the offsets results in a nonzero deviation Az. More precisely, 

Az « (c-c*)(h2 -hi) 
d2z(h0) 
dhdc 

Therefore, I define the quantity d2z/dhdc as the sensitivity to the velocity error for 
common offset images. Similarity, the quantity d2z/dxsdc can be defined as the sensitivity 
to the velocity error for common shot images. 

3.3    Multiple-layer Case 

If the medium is made up of more than one layer, the expression for the error estimate 
should be modified. Let us consider only a simple model that consists of two horizontal 
layers, in the common-offset situation as in Figure 3.2.   Differentiating equation (2.1) 

c2 

(x,z) 

FlG. 3.2. Two-layer model. c\ and c2 are layer velocities, d\ and d2 are layer 
thicknesses, and &i and 62 are angles of raypath from the vertical. 

with respect to c2, and using equation (2.2) yield 

dTs(xs,x)     dTr(x,xr) 

dz dz 
dz 

dc2 

drs(xs,x)     dTr(x,xr) 

dc2 dco 

By using the notations shown in Figure 3.2, the traveltimes are represented by 

d\ d2 
TS(XS,X) =Tr(x,Xr) = 

CiCOSÖi        C2COSÖ2 
17 
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Although 61 and 62 are functions of c2, two variations from #i and 92 will be balanced 
to each other from Fermat's principle. Therefore, differentiating equation (3.24) with 
respect to c2 will yield 

9T- - *' -        * (3.25) 

Substituting this result and 

into equation (3.23), I obtain 

dc2      dc2 c2. cos 82' 

drs _ drr _ cos$2 

dz      dz        c2   ' 

dz d2 

(3.26) 

dc2     c2cos202' ^ '    ' 

Now I want to derive a formula for the sensitivity d2z/dc2dh. Firstly, I evaluate c2 at the 
true velocity of the second layer, so that the imaged depth z and d2 will be independent 
of offset. Introduce the horizontal-slowness parameter 

sin #i      sin 92 
P =  = -. (3.28) c\ c2 

y       > 

Then 

cos 0i = ^/l - cjp2, cos 02 = \A - 4P2, (3.29) 

h =     d^P     +     <W ( 

Jl - <?,P2     y/l-^ 

dh d\C\ d2c2 
+ TTZT^r^H- (3.31) dp      (1 - cfp2)3/2     (1 - <%p2)3/2 

From equations (3.27) and (3.29), I have 

d2z   _ d2^_ /     1     \ _ did_ (      1      \ dp _     2d2c2p    dp 

dhdc2    c2 dh Vcos2e2) ~ c2 dp vi -4P
2
) dh ~ (i - 4p2)2dh'        (3-32) 

By using equation (3.31), the above equation becomes 

d2z   _     2d2c2p     \      dici d2c2      
n   1 

+ 
dhdc2      (1 - 4p2)2 [(1 - c\p2fl2 ^ (1 - 4p2)V2 

When c2 « q, equation (3.33) is simplified to 

(3.33) 

d2< 
dhdc2 C2=Cl 

d2     2 tan 0\ 
d\ + d2     c\ 

(3.34) 

Compared to equation (3.18) (let <f> = 0), equation (3.34) shows us that for multiple 
layers, the sensitivity to the velocity error in a thin layer is reduced by the ratio of the 
layer thickness to the reflector depth. 
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To go a further, I introduce the ratio of the layer velocities, 77 = c2/c\, then equa- 
tion (3.33) becomes 

dh 2d2np di + d2n 
(l-cfp2)3/2        (1 - T]2c\p2fl2 dhdc2      (1 — n2c2p2)2 

When 77 is small, the above equation can be approximated by 

d2z 

(3.35) 

dhdc2 

o ti9 
2r]pcos6i—. 

rf2 

■d1 

(3.36) 

Equation (3.36) quantifies how the sensitivity to the velocity error deteriorates for a low- 
velocity zone of the target layer. 

Moreover, for n horizontal layers, equation (3.33) can be generalized to 

d2i       2dncnp 
dhdcn (1 - C2p2)2 

diCi 
T-l 

tx (1 " c?p2)3/2J (3.37) 

where c,- is the f-th layer velocity and d,- is the thickness of the i-th layer. 
For a more complex velocity model, the formula for the sensitivity of velocity analysis 

could not be so explicit, but it is still computable. The detailed discussion will be seen 
in Section 5.2. 
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Chapter 4 

HYPERBOLIC RESIDUAL MOVEOUT 

When an incorrect velocity is used to migrate multichannel data, the imaged depths 
in a CIG will differ from each other. In this situation, residual moveout (RMO) is 
observed in migrated data. Like normal moveout, residual moveout contains information 
from which one can estimate the medium velocity. Some geophysicists have applied this 
technique to migration velocity analysis. They assume a hyperbola for residual moveout 
and estimate an average velocity, then convert this average velocity into the interval 
velocity. In this chapter, I develop a theoretical basis for this kind of application. Under 
the assumption of small offsets, I derive general representations for residual moveout by 
using the imaging equations introduced in Chapter 2. Based on these formulas, I define 
RMO velocity and show that residual moveout is dominated by the difference between the 
RMO velocity and migration velocity. For a laterally invariant velocity, I prove that the 
RMO velocity is a good approximation to the rms velocity, so one can directly estimate 
velocity by residual-moveout correction. In this way, velocity analysis requires only a 
single prestack migration, so one can avoid relatively costly remigrations. When the 
velocity has a weak lateral anomaly and the reflector is horizontal, I develop a formula 
to calculate the interval velocity from the RMO velocity. For a complex structure, I also 
show the limitation of this approach for velocity estimation. 

4.1    Residual Moveout Representations 

Consider the 2-D, common offset case. All notations have the same meaning as 
those in Chapter 2. Suppose that prestack migration is implemented on a multi-offset 
data set by using an initial velocity. The migrated data is sorted into CIGs. At each 
CIG, the imaged depth is a function of offset, i.e., z = z(h) (see Figure 4.1). When the 
migration velocity is correct, z(h) = z(0) for all offsets. Otherwise, for a wrong velocity, 
one should expect that z(h) ^ ^(0). It is desirable to know the relationship between 
residual moveout, z(h) — z(0), and the error in velocity. Below, I derive this relationship 
for the simplest case and then generalize that result. 

4.1.1    Constant velocity and horizontal reflector 

Suppose that the medium velocity is a constant v, migration velocity is a constant 
c, and the reflector is horizontal. Then the recorded traveltime is given by 

4h2 

v2 t2(y,h)=t2(y,0) + -7Y, (4.1) 
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FlG. 4.1. A Sketch for Common Image Gather. 

while the traveltime to the migration image is given by 

c c       c 

Solving here for the image depth z as a function of offset yields 

z\h) = Cjt*(y,h) -h* = Cjt\y,0) + (£ - 1^2 = z2(0) +(^-l\ h\ 

That is, the moveout is a hyperbola for c > v or an ellipse for c < v: 

*(h) = Z2(0) + (4 " l) h2. 

(4.2) 

(4.3) 

(4.4) 

Equation (4.4) shows that the residual moveout is the exact hyperbola or ellipse for 
constant velocities v and c, and horizontal reflector. This result is parallel to that of 
moveout in unmigrated data. 

4.1.2    General case 

For a general velocity or an arbitrary reflector, one should not expect a simple 
expression such as (4.4). However, the more general result can be approximately derived 
by considering an asymptotic expansion for small offset. Thus, I seek a Taylor series for 
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z as a function of h. 
First, because 2 is a symmetric function of h, I obtain 

dz 

dh 
= 0, 

h=0 

dh 

dh3 = 0, etc. (4.5) 
h=0 

This result implies the Taylor series expansion 

z\h) = zz(0) + i- ldV 
2dh2 h2 + 0(h4). (4.6) 

h=0 

Now let us try to estimate the second derivative term. 
For fixed x, the midpoint y and the imaged depth z are functions of offset h. Dif- 

ferentiating equation (2.8) with respect to h, yields 

drs     drr 

dy      dy 
dy + 

dh 
drs     drT 

dh      dh 
+ dr3     drr 

dz      dz 
dz _ dt dy     dt 
dh     dy dh     dh' 

(4.7) 

Using equation (2.9) to cancel the first terms on left and right, I obtain 

drs     drr 

dz      dz 

Notice that y is symmetric in h, so 

dz _ dt 
dh     dh 

drs     drr 

dh      dh 
(4.8) 

dy 

dh 
= 0. (4.9) 

h=0 

Using equations (4.5) and (4.9), I find the derivatives of both sides in equation (4.8), 
with respect to h at h = 0, are given by 

and 

d 'dt 
dh dh 

d 

dh 

'dlt + OlA 
Kdh      dh) 

h=Q 

d2t 
dh2 

h=0 

d2T,        d2Tr 

'drs     drA dz_ 

dz      dz j dh h=0 

'drs + 

dh2      dh2 

drr\ d?z 

h=0 

dz      dz I dh2 

(4.10) 

(4.11) 
/i=0 

Differentiating equation (4.8) with respect to h, and using (4.10) and (4.11), I set up the 
following equation for (Pz/dh2 \h=o' 

drs     drr\ d?z 

dz      dz ) dh2 
h=o 

eft 

dh2 
Ä=0 

d2r3     d
2rr + 

dh2      dh2 (4.12) 
/.=o 

Equation (4.12) holds for any medium velocity function, any migration velocity, and an 
arbitrary reflector. Now I will simplify this equation for the case of constant migration 

22 



velocity. 
Suppose the migration velocity is a constant, c; then 

rs = \jz2 + (x-y + h)2/c, rr = yj' z2 + (x - y - h)2/c, 

and, 
dr3 

dz h=0 ~dz~ 

d2rs d2rr 

dh2 
h=0 dh2 

h=0 

h=0      CP 

__ 1     (x-y)2 

cp cp3 

where 
p= \Jz2 + {x- y)2. 

Equations (4.15) and (4.16) yield 

drs     drr 

dz      dz 

d2Ts        d
2Tr 

dh2      dh2 

_2z_ 

Jh=o~ c^' 

2      2{x - y)2 

h=o     CP CP 

Using these results, equation (4.12) is simplified by 

2zd2i 
cp dh2 

h=o 

dH 
dh2 + 2(x - y)2      2 

h=0 cp" cp 

Furthermore, 

2z 
dh 
dh2 

<Pz2 

J/i=0 dh2 
h=Q 

P=2t lfc=0» 

(y — x)      c dt 

P      =2~d~y h=Q 

Thus, I obtain the result 

<Pz2 

or 

dh2 

(PT
2 

h=0 

dh2 = 2 
h=0 

' dH   fdt_\2' 
fdh2 + [dy 

ldh2 + \dy 

-2, 
fc=0 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
/i=0 
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where rTO is the migration time defined by 

2z 

c (4.25) 

From equation (4.23), it is concluded that after migration, the the main part of the 
residual moveout is determined by the migration velocity c, curvature of the unmigrated 
data td2t/dh2, and slope of the unmigrated data dt/dy. This statement is true for a 
constant migration velocity, any medium velocity distribution, and an arbitrary reflector. 
Based on equation (4.23), I define a residual-moveout velocity (RMO velocity) by 

1 1 JJH_     (dtV 
Oh2 + [dy [Vrmo]2        4 

By using the RMO velocity, the residual moveout is written as 

(4.26) 
h=Q 

rl(h) = T£(0) + ( -i- - i) 4Ä2 + 0{hA). (4.27) 
i   rmo 

Equation (4.27) shows the RMO velocity can be directly estimated from the residual 
moveout. Compared to NMO velocity, a new term, dt/dy, is involved in the definition 
of RMO velocity, and these two velocities will be equal if and only if dt/dy = 0. In 
the following examples, it is seen that this term removes the dip effect in RMO velocity 
analysis and makes the RMO velocity approximately equal to rms velocity under the 
condition of lateral velocity homogeneity. In addition, the RMO velocity analysis based 
on equation (4.27) is actually composed of an inverse NMO with velocity c and an 
NMO velocity analysis. Therefore, all programs for NMO velocity analysis can be used 
to do RMO velocity analysis. This technique was applied by Deregowsky (1990). In 
his paper, Deregowsky used an iterative algorithm in RMO velocity analysis to handle 
lateral velocity variation. However, this iteration may fail as I will show later. 

4.2    Velocity Estimates for Constant Migration Velocity 

For arbitrary migration velocity, the residual moveout representation (4.12) will be 
too complex to yield a quantitative formula for velocity estimates. In contrast, when 
migration velocity is a constant, the residual moveout representation is a more explicit 
function of the velocity error, which allows velocity estimates to be done without iteration. 
Furthermore, prestack migration with a constant velocity is most efficient. 

In addition to the normal moveout formula (4.4), I will compute residual moveout 
by the formula (4.23) and (4.24) for several special cases. These results are similar to 
normal moveout, except that velocity estimates by the former are insensitive to reflector 
dips. 
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4.2.1    Constant medium velocity 

Dipping reflector 
Suppose that the medium velocity is a constant v, and the reflector dip is 6. In this 

case, 
t2(y, h) = Ay2 sin2 6/v2 + Ah2 cos2 6/v2. 

Therefore, 
fi2t' 

= 4cos20/u2, 
h=0 dh2 

dy 
= 2sin9/v. 

/i=0 

From equation (4.23), I obtain 

<Pz2 

dh2 = 2(6z/v2 - 1) 
/i=0 

.2 /„.2 zl{h) = z'(0) + {c'lv1 - 1) hl + 0(h4). 

or 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

rl(h) = r2 (0) + (1/v2 - 1/c2) Ah2 + 0(h4). (4.33) 

Equation (4.33) shows that for a constant medium velocity and a dipping reflector, 
the residual moveout is independent of the reflector dip and the RMO velocity equals the 
medium velocity. 

Diffraction from a scattering point 
Suppose that the medium velocity is a constant v, and a scatterer is located at the 

point (x*,z*). In this case, 

t(y,h)=   y/(y-h- x*)2 + (z*)2 + y/(y + h- x*)2 + (z*)2 /v, 

'dh2 
GO ■M2 

h=o     v2 (y - x*)2 + (z*r 
2 / *\2 'my  = 4    (y-x*) 

ßyjh=0     v
2 (y - x*)2 + (z*)2' 

Therefore, from equation (4.23), 

dV 
dh2 = 2(c2/v2-!)- - 0^2/„2 

/i=0 

z2(h) = z2(0) + (c2/v2 -l)h2 + 0{h4), 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 
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or 
rl(h) = r* (0) + (1/t;2 - 1/c2) 4h2 + 0(h4). (4.39) 

Again, equation (4.39) shows that the residual moveout is independent of the lateral 
offset from the point scatterer and the RMO velocity equals the medium velocity, when 
the medium velocity is a constant. 

4.2.2    Laterally invariant medium velocity 

Horizontal reflector 
Suppose that the medium velocity is a laterally invariant function v(z), and the 

reflector is horizontal with depth z*. In this case, 

t2(y,h) =t2(y,0)+4h2/v2
rma(z*) + O(h4), (4.40) 

Where vrms is the rms velocity of v. Differentiation of the above equation yields 

= 4/vLs(z*), (4.41) 
h=0 

dt_ 
dy 

Therefore, from equation (4.23), 

d?z2 

dh2 

= 0. (4.42) 
h=0 

2c2 

- 2. (4.43) 
h=0 *£«(*•) 

r2 

z*(h) = z2(0) + f^^ -l)h* + 0{h% (4.44) 

and 
Vrmo(z(0)) = Vrms(Z*). (4.45) 

Notice that z(0) ^ z*. That is, in depth migration, the imaged depth is inconsistent 
with the desired point at which the rms velocity is determined from the residual moveout. 
However, if let 

~   fz'   ds 
T  =2 /    TT' 4-46 

Jo    v{s) 

then 

r2
m(h) = rl(0) + (-^ - 1) 4h* + 0(h% (4.47) 

and rm(0) = r*. Therefore, time migration can give us the correct location at which the 
rms velocity is determined by the residual moveout. 

Equation (4.47) shows that when the true velocity is laterally invariant, the RMO 
velocity equals rms velocity at the migration time. 
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Dipping reflector 
Suppose that the medium velocity is a laterally invariant function v(r), and the 

reflector angle is 6. In this case, 

t(y,0)=lT' (l-p2v2(o))-1/2da, 

dH 

dh2 
h=0       S0

T*V*(l-pW)-3W 

dt 

dy 
= 2p, 

(4.48) 

(4.49) 

(4.50) 
h=0 

where r* is the vertical time at the reflection point and p is the horizontal slowness, i.e., 

sin# 
P = 

Therefore, 

t—     (— 
dh* + [dy. = 4 

h=0 

V(T*)' 

f0
T' (1 - p>v*)-Wda 

/0
T't)2(l-pV)-3/2rf«r' 

and 

rmo 
J0

r^2(q)(l-pV(^))-3/2^ 

J0
r'(l-])VW)-3/%     ' 

Notice that vrmo does not equal the rms velocity t>2 that is defined by 

V
2

2(T*) = ^ £ v2(a)da. 

In fact, from the Taylor series expansion, derived in Appendix A, 

where 

V2rmo = vl + ±(V$-V$)p2 + O(p4), 

1   rT' 
v* = — /    v4(s)ds. 

T* JO 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

v4 is always greater than v2 and they are equal only if v(z) is a constant. Moveover, vrmo 

is close to V2(T*) for small p or a small gradient of v(z). When vrmo is estimated from the 
residual moveout formula (4.27), vrmo is measured at the migration time, rm(0) instead 
of T*. That means, it is desirable if 

Vrmo « ü2(rm(0)). (4.57) 

Fortunately, vrmo is a better approximation of t>2(rm(0)) than v2{r*). In fact, if v\ is a 
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linear function of migration time, one can prove that vrmo is exactly equal to v2(Tm(0)) 
for the choice c = t>2(0), no matter what dip the reflector. 

It is concluded that for choosing c = ^(0), the RMO velocity is a good approxima- 
tion of the rms velocity at the migration time as long as the velocity varies mildly. 

4.2.3    Higher residual terms 

The residual moveout is hyperbola-like only for small offset. In fact, offsets should 
not be too small so that resolution in velocity analysis is not too low (See Chapter 3). 
Therefore, one should consider the error due to truncating the higher residual terms. 
This work is partially implemented in Mathematica. 

Using the rule of differentiation for a compound function in equation (4.12) and 
setting c constant, the fourth order derivative of z with respect to h satisfies 

d(ps + pr) d
4z 

dz       dh4 = c 
h=0 

-6 

&H        d?y   Ft 
dh4 +    dh2 dh2dy 

&{ps + Pr) 

(PZ d3(Ps + Pr) 
dh2    dh2dz 

-3 

dh4 

#y&(p. + pr) 
h=0 

/»=0 dh2    dh2dy 
(4.58) 

/i=0 

For a constant velocity v and a dipping reflector with angle 6, equation (4.58) is simplified 
to 

d4rl        _    24(l/?;2-l/c2)sin22fl 

(z*)2 dh4 (4.59) 
h=0 

where rm is the migration time and z* is the depth of the reflection point. Therefore, 
from (4.59) and (4.33), a more accurate expression for the residual moveout is 

rlW = 4(0) + 4 (I - I) tf - (^-l/eW2V + ^ ^ 
(z-y 

For a constant velocity v and a scattering point at (x*, z*), again 

d4rl 
dh4 

h=Q 

24(l/t;2-l/c2)sin22fl 
(z*)2 (4.61) 

except that now 

9 = arctan 
y-x' 

In comparison, for the unmigrated data, the higher residual term is 

d4? 
dh4 

/i=0 

24 sin2 20 cos2 fl 

v2(z*)2       ' 
(4.62) 

Equations (4.59) and (4.61) show that when the true velocity is a constant, small higher- 
residual terms of moveout are obtained for a close background velocity, small offset, small 
ratio of offset to the imaged depth, and the dipping angle that is near 0 or 90 degrees. 
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For a laterally invariant velocity and a horizontal reflector at the zero-offset time t0, 

d'ri 
dh4 

_ 24(v4
2 - v\) 

t2V8             ' 
h=0               l0V2 

(4.63) 

where v2 and v4 are defined in equations (4.53) and (4.55). 
Equation (4.63) shows that when the medium velocity is laterally 

higher-residual term is obtained for small gradient of the velocity. 
invariant, a small 

4.2.4    Lateral velocity anomaly 

RMO velocity can be estimated from residual moveout. If the medium velocity is 
laterally invariant, the RMO velocity approximates the rms velocity. However, when the 
velocity has a lateral anomaly, this conclusion fails so that one cannot calculate directly 
the interval velocity from the RMO velocity by Dix equation or other algorithms. Now I 
will develop an equation to solve for the laterally variant interval velocity. This equation 
holds for a small lateral velocity variation and a horizontal reflector. For horizontal 
reflectors, the RMO velocity is the same as the asymptotic stacking velocity in normal 
moveout. 

Suppose the true slowness w(x, z) can be written as 

w(x,z) = w{z)(l+a(x,z)), (4.64) 

where w(z) is a reference slowness and a(x, z) is a small perturbation. The slowness 
w(x,z) and horizontal reflectors will generate a two-way traveltime map, t(y,h). After 
prestack migration with an initial migration velocity, a RMO velocity (therefore, slow- 
ness) can be calculated from residual moveouts. Let w3(x,z) denote this RMO slowness, 
ws(z) denote the average of ws(x, z) over the z-direction; then an equation for a(x, z) is 
obtained in Appendix B: 

wj{x,z) 2 -i-ir 
tn Jo w2(z) t0 Jo 

da 
(4.65) 

where vs = l/ws, t0 is the two-way zero-offset time, and v be the solution of 

1   fz 

S^ = T Jo d^da- (4-66) 
When a and w are independent of depth, the result in equation (4.65) is the same as 
that of Lynn and Claerbout (1982). Equation (4.65) shows that the second derivative of 
a determines the anomaly of the RMO velocity; the anomaly of the RMO velocity at a 
depth results from the anomaly of the interval velocity above this depth. Furthermore, 
H vds increases as a decreases, so the anomaly of the interval velocity near the surface 
has the largest effect. 
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Applying the Fourier transform, with respect to x, to equation (4.65), I obtain 

2   fz 

g(kx,z) = T I   a(kx,a) 
In JO t0 Jo 

h2 nrvdsv     *(*) 
^-y (4-67) 
v(a) 

where kx is the wavenumber and g is the Fourier transform of w%/w* — 1. Equation (4.67) 
is a First-kind Volterra integral equation that is ill-posed. Therefore, the recursive 
alogrithm for equation (4.67) is unstable. To obtain a stable solution, one may apply the 
damped least-squares method to this equation. 

4.3    Some Extensions 

The previous discussion in this chapter focused on the common offset case in 2-D. 
Now I will discuss some extensions to common shot and 3-D situations. 

4.3.1    Common shot case 

Although common offset migration and common shot migration are stated in differ- 
ent forms, they should represent the same physical process and produce the same images, 
if the same multichannel data are used. Particularly, for a constant migration, the resid- 
ual moveout in common shot should have the same representation as equation (4.27) 

\urmo        °  / 
<W = <(0) +   -3 -s)W + 0{h*). (4.68) 

\Vrmo        C  / 

The problem is: for common shot, migrated data in a CIG are sorted according to 
shot positions instead of the shot-receiver offsets. That means, one does not directly know 
what offset values the migrated traces in a CIG have, unless the reflector is horizontal. 
In order to overcome this difficulty, the offsets must be calculated for the traces in a CIG. 
Lee and Zhang (1991) proposed a formula to implement this work. However, Lee and 
Zhang's formula requires information of reflector dip and holds for small-dip reflector and 
constant medium velocity. Therefore, the application of this formula is limited. 

Another way to calculate the offset is by using the Kirchhoffintegral. In the Kirchhoff 
summation, one calculate two inversion outputs which have two different amplitudes. One 
is the original amplitude; the other is the original one multiplied by offset h. Thus, the 
ratio of the amplitudes of the two outputs will give the offset value at the specular source- 
receiver position. In this way, a mapping between shot position and offset is obtained. 
The same technique was used to determine the angle of reflection in Kirchhoff inversion. 
[See Bleistein et al. (1987).] 
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4.3.2    3-D case 

Consider the 3-D common offset case. The imaging equations are stated in equa- 
tions (2.22) and (2.23). The Taylor series of the imaged depth is expanded into 

z2(h) = z2(0) + i 
10V 
2dh\ /i=0 

h2 + 
d2z* 

dh\dh<. 
15V 

h=0 2 dh2 h=0 
h2 + 0(\h\4),    (4.69) 

where the odd-order derivatives are eliminated because of the symmetric condition 

z(h) = z(-h). (4.70) 

Similar to the derivation of equation (4.12), each of the second derivatives in equa- 
tion (4.69) will individually satisfy 

''dr.     drr\    02; + 
dz      dz I dhidhj 

dH 

/i=0     dhidhj /i=0 

d2Ts d2Tr 

dhidhj     dhidhj h=0 
(4.71) 

where the indices, i and j, take the integer value 1 or 2. Equation (4.71) is valid for any 
velocity distribution and an arbitrary reflector. 

Suppose that the migration velocity is a constant, c; then 

ra = sjz2 + \x - y + /i|2/c, rr = yjz* + |<c - y - h\2/c. 

So, 

and 

drs     drr 

dz      dz 
_ 2_£ 

/i=0     CP' 

d2T3 d2Tr 

dhidhj     dhidhj /i=0     CP 

_ 2_c       1{xi-yi)(xj-yj) 
— °tj o 

cp6 

where <$,-.,• is the Kronecker delta (1 if i = j and 0 if i' ^ j), and 

p= yjz2 + \x- y\2. 

Let <0(y) =*(y,0); then 

' = 2*°' 
and 

P 2 0y,- 

By using relations (4.76) and (4.77), equation (4.74) is rewritten as 

dh + d2Tr 4  .       ldtodt0 
-ö.i — 

dhidhj     dhidhj 1^0     c2tQ *3     t0dyidyj' 
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(4.75) 
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(4.77) 

(4.78) 



Furthermore, suppose that the medium velocity is a constant, v. If c = v, all the 
derivatives in the left of equation (4.71) will be zero because the imaged depth z is 
independent of offset for a correct migration velocity. That is, 

d2t 
dhidhj h=Q 

d2T, d2Tr 

dhidhj     dhidhj h=$,c=v 
(4.79) 

Using equation (4.78), and setting c = v, I rewrite equation (4.79) as 

d2t 
dhidhj 

4   .       1 &o dt0 
-On — 

h=Q     y2fo v     todyidy/ 
(4.80) 

Since t is just the recorded traveltime, the above expression must be independent of the 
migration velocity c. Substracting equation (4.78) from equation (4.80), yields 

d2t 
dhidhj fc=0 

dh + d2 rr 

h=0     fo dhidhj     dhidhj 

Substituting equations (4.81), (4.73) and (4.76) into  (4.71), and using 

d2z 

-£(£-?H     (4-8l) 

d2z2 

dhidhj h={ 
2z 

dhidhj h=0 

I obtain 
d2z2 

dhidhj 
= 2[--l)Sij. 

Finally, by using the above equation, the residual moveout (4.69) is simplified to 

z2(h) = z2(Q)+(^-l)\h\2 + 0(\h\4), 

(4.82) 

(4.83) 

(4.84) 

or 

l(h) = r2
mm+4^-^j\h\2+o(\h\% (4.85) 

where rm is the migration time. Equation (4.85) holds for constant velocities and an arbi- 
trary reflector, and shows that the residual term in the the migrated data is independent 
of both reflector dip and the source-receiver azimuth. 

When the medium velocity is varied, one should replace v by vrms, although this 
statement is precise. Therefore, equation (4.85) offers a theoretical basis for estimating 
the rms velocity from the 3-D residual moveout. 

4.4    Limitation on a Two-layer Model 

Now, I design a test to show the limitation of a velocity estimation that uses the 
hyperbolic residual moveout (4.27).   The model, shown in Figure 4.2 consists of two 
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constant velocity layers, v\ and v2, and two flat interfaces. The ray starts vertically from 
the midpoint y on the surface and intersects the first interface with the angle ai from 
the normal; then transmits to the second layer with the angle ßi from the normal and 
intersects vertically the second interface at the reflection point (x,z). 

surface 

interface 2 

FlG. 4.2. Two-layer model. 

The ray is perpendicular to the surface, so dt/dy = 0. This fact means vrmo = vnmo. 
From Hubral and Krey's formula (1980), I have 

v2    =v2     = rmo nmo 
1 

Ati + At2 
v\Atx + v\At2 

cos* a i 
cos2 ß 

(4.86) 

where Aii and At2 are the one-way time along the ray in the first and the second layer 
respectively. Suppose that v2 is 10 percent greater than vx, i.e., v2 = l.lvi. Also, I 
specify, A*i = At2 and ax = 60°. After calculations, I find ßx = 72.3° and vrmo = 1.46u:. 
From the Dix equation, the estimated interval velocity is obtained, 

v2 = 1.81^1 = 1.64t>2. 

That is, if the error in initial velocity is 10 percent, then the error in the updated velocity 
may be magnified to 64 percent. 

This example shows the limitation of velocity analysis by hyperbolic residual move- 
out: when the velocity distribution contains a strong lateral variation, velocity updating 
may fail to improve the initial value. 

4.5    Computer Implementation 

Parallel to NMO velocity analysis, one can use a semblance and velocity scans to do 
RMO velocity analysis. Therefore, the program for RMO velocity analysis is similar to 
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the existing program for NMO velocity analysis, except in the residual term. A suggested 
data processing technique based on this approach is composed of prestack migration with 
a constant velocity, velocity analysis, residual moveout, stacking, and poststack residual 
migration. 

To demonstrate the processing procedure, I applied this method to synthetic seismo- 
grams computed for a subsurface model in which velocity increases linearly with depth 
z, according to v(z) = 1.5 + O.82 km/s. The model, shown in Figure 4.3, consists of five 
reflectors, each with a dipping and horizontal segment. Dips for the dipping segments 
range from 30 to 90 degrees in 15-degree increments. The seismograms contain 10 off- 
sets, ranging from 100 to 1900 meters in 200 meter increments. Because of the dipping 
reflectors and the depth dependent velocity, the RMO velocity in equation (4.53) and 
the rms velocity are not the same but close each other. The relative error between the 
two, shown in Figure 4.4, increases with depth and dip. The maximal error is about two 
percent. 

After prestack migration with the constant velocity, c = 1.5 km/s, the dipping events 
are not migrated to correct positions, except for the 30-degree dip (see Figure 4.5). One 
of the common image gathers is plotted in Figure 4.6. Because the migration velocity 
is lower than the true velocity, the imaged depths increase with offset. The velocity 
spectra for this CIG is shown in Figure 4.7. Unlike the velocity spectrums in NMO, 
the velocity peaks here are insensitive to reflector dips and, therefore, single-valued. 
The RMO velocities are picked from these peaks. After residual moveout correction, 
all events in the CIG are corrected to horizontal ones, shown in Figure 4.8. Stacking 
the data, having residual moveout corrected, yields a result shown in Figure 4.9, which 
is equivalent to the zero-offset migration with the constant velocity c. By using the 
interval velocity converted from the RMO velocity, poststack residual migration gives 
the corrected reflector positions shown in Figure 4.10. Notice that the bottom of the 
vertical event is not migrated completely, which is due to some errors involved in the 
RMO velocity estimates and that these errors are enlarged in the conversion of the 
interval velocity. For example, the relative error between the true interval velocity at 2 
seconds and the computed one is 4 percent. 

4.6    Summary 

Under the assumption of small offset, residual moveout representations are obtained 
in this chapter. Using these relationships, one can estimate directly the medium velocities 
from residual moveouts without iteration when the medium has weak lateral velocity 
variations. For complex structures, this approach does not offer an accurate enough 
velocity estimation, even with iteration. 

For converted waves or anisotropic media, seismic data are not symmetric to offset 
generally. Thus, the residual moveout representations will be dip-dependent and, there- 
fore, be less useful in velocity estimation. However, these representations may allow us to 
make a qualitative analysis of the relationship between the imaged depth and migration 
velocity. 
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FlG. 4.3. Subsurface model used to generate synthetic seismic traces. 
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FlG. 4.4. The contours of relative error between the RMO velocity and the rms 
velocity. The error increases with depth and dip. 
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FlG. 4.5. The migrated data with the contant velocity. The offset is 100 meters. 
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FlG. 4.6. One of the common image gathers from date migrated with the constant 
velocity. The traces are located at 1.4 km in Figure 4.5. 
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FIG. 4.7. Velocity spectrum for the CIG in Figure 4.6. 
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FlG. 4.8. Residual moveout correction for the CIG in Figure 4.6. 
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FIG. 4.9. Stacking for the partially migrated data of the ten offsets. 
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FlG. 4.10. Poststack residual time migration of the data in Figure 4.7. 
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Chapter 5 

ITERATIVE APPROACH: METHODOLOGY 

When velocity has lateral variations, the residual moveout cannot be approximated 
by a hyperbola and the RMO velocity may be quite different from the rms velocity. 
Therefore, the velocity estimate cannot be simply done by using residual moveout cor- 
rection. In this situation, iterative approaches are required to update velocity. However, 
iterative formulas used in conventional approaches are derived under assumptions such 
as small offset, small dip, and lateral velocity homogeneity. Although iteration generally 
is helpful in obtaining a more accurate velocity, too coarse an approximate formula for 
updating velocity not only increases the number of iteration steps but may result in di- 
vergence. Thus, applications of those approaches to velocity analysis are limited when 
there are complex structures. In Chapter 4,1 have shown a counter example for iteration 
when the hyperbolic residual moveout method is applied to a simple two-layer model. 

In this chapter, I will present an iterative approach to migration velocity analysis. 
Using perturbation theory, I derive a formula for updating velocity from residual moveout 
by computing a derivative function of imaged depths with respect to velocity. Signifi- 
cantly here, this formula has no limitations on offset, reflector dip, or velocity distribution 
if the velocity perturbation is sufficiently small. Therefore, this formula gives a general 
description of the relationship between residual moveout and residual velocity. Based on 
this formula, I revise the residual-curvature-analysis method for velocity estimation. In 
addition, this formula provides both sensitivity and error estimation for migration-based 
velocity analysis, which is helpful in explaining the reliability of the estimated veloc- 
ity. Moreover, this velocity analysis approach can be extended to the 3-D case and to 
converted waves. 

5.1      Velocity Analysis by Perturbation 

In Chapter 4, the residual moveout representations are obtained under the small- 
offset assumption. However, this assumption is violated for a lateral velocity variation. 
Here, I will derive a residual moveout representation by using a perturbation. This idea 
is suggested by tomography approaches to velocity estimation. Under the assumption of 
small velocity perturbation, there is a linear relationship between the residual traveltime 
and the residual velocity. In the tomographic approach, raypaths are required to con- 
struct the equation system for velocity estimation. However, raypath construction seems 
more difficult in reflection tomography than in refraction tomography. Raypaths strongly 
depend on the reflector position (especially the slope) in reflection tomography and the re- 
flector cannot be determined accurately. In contrast, here I will use the stationary-phase 
principle to determine raypaths, without requiring knowledge of an accurate reflector 
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position. My derivation will be based on the imaging equations in Chapter 2. 

5.1.1    Mathematical derivation 

Consider the 2-D common offset case. All notations have the same meaning as those 
in Chapter 2. The imaging equations (2.8) and  (2.9) are repeated 

Ta(xa,x) + rr(x,xr) = t(y,h), 

drs     drT 

dy      dy dy' 

(5.1) 

(5.2) 

At a common image gather, the imaged depth z can be determined as a function of h. If 
the migration velocity equals the true velocity, then the imaged depth z will be indepen- 
dent of offset h; otherwise—for incorrect velocity—z varies with offset h. Consequently, 
the imaged depths in CIGs provide information on velocity distribution. 

Equations (5.1) and (5.2) display a general relationship between the imaged depth 
and migration velocity. However, this equation system is nonlinear, making it very 
difficult to directly solve for velocity. Here, I use a mathematical tool—perturbation—to 
linearize this equation system. 

Suppose that the velocity distribution v is characterized by a parameter or a family 
of parameters, A, 

v = v(x; A). 

For example, when v(x; A) = VQ + ax + bz, A is any set of one to three parameters 
chosen from vo, a, and b. Thus, the problem of velocity estimation becomes parameter 
estimation. To simplify the derivation, I suppose that A is just a single parameter at 
first. 

For a fixed image location x, I differentiate equation (5.1) with respect to A. Noticing 
that y and z are functions of A; then 

drs     drr 

dy      dy 

dy 

dX 
+ drs     drr 

~dX+Jx + drs     drr 

dz      dz 
dz 
dX 

dt dy 

dydX' 
(5.3) 

By using equation (5.2), the first term of the left side in equation (5.3) is balanced by 
the right-hand term. Therefore, 

drs     drr 

dz      dz 
dz 
dX 

drs 

dX 
Ö7V 

dX' 
(5.4) 

Let 0S or 0r be the angle between the raypath from the source or the receiver, and the 
vertical at x; then 

drs       COS0J, drr      cos9r .     . 
(5.5) 

dz      v(x; A)' dz      u(a;;A)' 
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By using the above equation, equation (5.4) is rewritten as 

cos 6S + cos 6S dz drs     drr 

v(x;X)      dX = ~~d\ ~ ~dX' 

Thus the derivative of imaged depth with respect to A is found, 

(5.6) 

dJ = 9(*,h), (5-7) 

where 
/    M \9rs     drr V{X]X) (5.8) 

cos 6a + cos 6r 

The function g characterizes the relationship between the imaged depth and the migration 
velocity in a general medium context. The computation of this function will result 
in a new migration velocity analysis method, compared to conventional ones based on 
hyperbolic residual moveout. 

Suppose that the true parameter is A* and the true reflection depth is z*. If there 
is a small perturbation 6X = A* — A between the true parameter and the parameter used 
in migration, then the imaged depth will have a corresponding perturbation 

6z(x,h) = z* — z(x,h) « -77<5A. 
ctA 

By using equation (5.7), a linearized equation is set for SA: 

6z = g(x,h)6\. (5.9) 

Equation (5.9) is valid for an arbitrary velocity distribution, arbitrary reflector dips, 
and any offset, as long as the velocity perturbation is sufficiently small, which is signifi- 
cantly different from the limited result of conventional RCA. 

Remark. When the velocity distribution is constant in layers, one can take A as 
velocity v itself, in the target layer. In this situation, 

dr      drr _    t, + tr 

äI + äÄ-—— (5-10) 

where ts (or tr) is a partial traveltime of TS (or rr) within this layer. Thus, the derivative 
function g is simplified to 

g(x,h)=       ta + tr (5.11) 
cos 0a + cos 6r 

This typical result was obtained by Lafond and Levander (1993). 
When the velocity distribution is characterized by multiple parameters, A = (A1; A2, 

..., An)T, the imaged-depth perturbation will depend on the perturbations of all these 
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parameters. Therefore, equation (5.9) will be modified by 

"   dz n 

6z(x,h) =Y,-zTö\i = Y.gi&hjSXi, (5.12) 
,= 1 aÄi ,=1 

where each derivative function is calculated by 

v(x; X) 
gi(x,h) = - 

dr3     drr 
(5.13) 

cos 0S + cos 6r 

If one could solve for 6X, the true parameters can be estimated by 

X* = X + 6X. (5.14) 

Notice that the left side of equation (5.12) involves the true depth z* that is unknown. 
Conventional methods deal with this problem by using the concept of the reference depth 
(Lafond and Levander, 1993) or adding z* as a new unknown (Stork, 1991). Here, I use a 
technique to remove z* directly in equation (5.12). The true depth can be approximately 
replaced by the corrected imaged depth z + Sz, 

n 

z* « z(x, h) + 6z(x, h) = z(x, h) + ^ gt(x, h)6Xi. (5.15) 

The true reflection depth z*, is independent of offset. Therefore, the corrected imaged- 
depths from different offsets should be close to each other. Mathematically, this statement 
means that the covariance of these depths is a minimum. Suppose that there are offsets 
h\, /i2, ..., hm, and image locations x\, x-i, ..., xa, then 

,f+^)=zf+X:^)<5A,-, (5.16) 

where 
zf] = z(xk,hj), 

6z{k) =Sz(xk,hj), 

9ij   = gi(xk,hj). 

I seek (5A,-'s such that the corrected imaged depths have the minimum variance; i.e., 

K    m   2 

EE(^) + <5#)--?(fc) + <5f(A:)) =min> (5-17) 
fc=i i=i 

where 
zW = (z[k\zik\...,zW)T, 

6zM = (6zlk\6z<?\...,6z£Y- 
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Here I use the overline to denote the mean value of a vector over the offset index. For 
example, 

1   m 

Indroduce the matrix and vector, 

A<*> = [««U,, SW = (6Sfc>,^,...,6f))r, (5.18) 

where 

»!f,=|;(«!f-#r)(9?,-#r). 

.(k)        i   (k)     (k) (fc)xT 

then, as shown in Appendix A, the solution of equation (5.17) must satisfy the linear 
equation, 

K 

I>W 
K 

(5.19) 
fc=i 

Specifically, if there is only one parameter to be determined, i.e n = 1, then equa- 
tion (5.19) will have an explicit solution 

<5A = 
E^E-i^f-FQ^-iw) 

Ef=1 E7=i {gf - g W 
(5.20) 

where 

and 

,(*) 9j    =9(xk,hj), 

9w = {glk\&\...,&))T. 
If the corrected imaged-depths are not close enough to each other, I implement iter- 

ation to obtain more accurate parameters. The iteration stops where the variance (5.17) 
achieves a given sufficiently small value. 

5.1.2    Computational techniques 

Calulation of the derivative function 
The function g(x, h) involves the derivatives of traveltimes with respect to the pa- 

rameter A. In the eikonal equation, 

1 

Kdx)   + \dz)   ~ t;2(x;A)' 
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Differentiating here with respect A yields 

dßdr     dßdr      ld_ (      1      \ 
dx dx * dzdz     2 dX \v2(x; X)) ' K      ' 

where 
dr 

ß = rx- 
The integral solution of equation (5.22) is 

(5.23) 

where L is the raypath from the source (or receiver) to the image point x. 
For each source or receiver, dr/dX can be determined from equation (5.22) or (5.23). 

Therefore, given an image point x and a specular source-receiver pair xa and xr, one can 
calculate g from formula (5.8). However, there is not an explicit formula to represent the 
specular source-receiver pair from the image point for a complex medium. To solve this 
problem, here, I use the Kirchhoff integral to calculate g. In the Kirchhoff summation, 
I calculate two migration outputs which have the same phase but different amplitudes. 
One uses the original amplitude; the other one uses the original amplitude multiplied 
by the quantity g. Thus, the ratio of the amplitudes of these two outputs will evaluate 
g at the specular source-receiver position according to the stationary-phase principle, 
without requiring knowledge of the specular source-receiver pair. This technique is the 
same as was used to determine the angle of reflection in Kirchhoff inversion (Bleistein et 
al., 1987). 

This approach to calculate the derivative function g depends the S/N ratio in seismic 
data and the power of stationary phase method. The stationary phase method works 
well if the dominant seismic wavenumber is large compared to the length scale of the 
velocity variation. In this sense, a smooth velocity is required in Kirchhoff migration for 
velocity estimates by perturbation. 

Parameterization of velocity distribution 
Although equation (5.19) holds for any velocity distribution, the solution will be un- 

derdetermined and unstable if too many unknown parameters are involved. Consequently, 
it is essential to characterize the velocity distribution by choosing appropriate parame- 
ters. Conventionally, one assumes that a velocity model consists of the construction of 
the macro-model (constant velocities and velocity interfaces). The interfaces divide the 
whole model into a number of blocks (shown in Figure 5.1). Here, I replace constant 
velocity in one block by a linear function that is characterized by three parameters: 

Ai + X2(z - z0) + X3(x - x0), 
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FIG. 5.1. Macro model. 

where (XQ,Z0) is a reference point. Thus, the velocity distribution is written in a form 

v(x, z) = v0(x, Z) + Ai + A2(2 - z0) + X3(x - x0), (5.24) 

where VQ is a background velocity. 
An imaged depth only depends on the velocity above it, except for turning rays. 

Therefore, use of a recursive algorithm (layer stripping) is possible to determine ve- 
locity in an individual block. I start from the block nearest surface. For example, I 
choose the top left block in Figure 5.1. In each block, iteration is used to calculate 
velocity parameters. Given an initial guess for A.'s, common-offset depth migration is 
implemented to obtain imaged depths and gi(x,h) in equation (5.13) for common image 
gathers. Equation (5.19) will give a correction of the parameters. Then by using the 
updated parameters as an initial guess, I correct the velocity again until convergence is 
achieved. After velocity analysis in one block, I migrate data with the corrected velocity, 
and pick the velocity interface from the imaged structure. When I finish determining 
velocity and velocity interface in one block, I will repeat the same procedure to the next 
block that is located below the finished block. 

An alternative choice of perturbation approach 
Perturbation methods are used to gain good linear approximations to nonlinear 

functions. However, in some cases, one should exercise caution in choosing the variable 
in which an expression is perturbed. For example, in acoustic media, z2 as a linear 
function of the square of migration velocity is more likely than z as a linear function 
of the migration velocity itself. For example, for a constant velocity medium and a 
horizontal reflector, equation (4.3) shows that z2 is the exact linear function of the square 

45 



of migration velocity. Therefore, instead of equation (5.7), I may use 

dz2 

dX = g(x,h), (5.25) 

where 

g(x, h) = - 22V{X>X) (5.26) 
cos 0S + cos 6r 

Thus, the linear parameterization of velocity distribution may be chosen as 

v2(x, z) = vl(x, z) + Ai + A2(z - z0) + \3(x — XQ). (5.27) 

5.2    Sensitivity of Migration Velocity Analysis 

Velocity analysis by prestack migration uses the difference between the imaged 
depths from different offsets to correct the velocities, which is represented by equa- 
tion (5.19). If the variance defined by equation (5.17) is zero, one can conclude that 
the velocity is correct. However, it is impractical to obtain an exact zero variance. There 
are many factors against achieving this goal: noise in the input data, nonacoustic prop- 
erties, inaccurate description of velocity distribution, and so on. Even while an apparent 
zero variance is obtained, the actual one may not be zero because of the errors involved 
in picking the imaged depths. The imaged depths in the variance are picked on the mi- 
gration output, so that the position error in imaged depths is controlled by the resolution 
of the migration output, which, in turn, depends on wavelength, among other things. 

Quantitatively, the matrices in equation (5.19) that depend on the functions #,, can 
be used to describe the sensitivity of the velocity error 6\, to the variance of residual- 
moveout error. Here, I will derive analytical representations for the simplest cases. 

Suppose that the velocity v(x, z) consists of a constant background velocity v0 and 
a perturbation that is a linear function of depth in one block. Moreover, I assume that 
the upper boundary of the block is a horizontal line, z = d, and the reflector, located at 
z = z*, is the bottom boundary of this block. The velocity function can be represented 
by 

v(x, z) = VQ + <*(Ai + A2(z - z0)), (5.28) 

where a = 0 for z < d, a = 1 for z > d, and ZQ is a reference depth (not necessarily in 
the block). A sketch for this block is shown in Figure 5.2. 

The initial guesses are set to 

Ai = A2 = 0. 

As shown in Appendix B, I obtain the following representations for the p,'s that is defined 
in equation (5.13), 

.    ,,      h2 + z1 z — d .   nn. 
9l(x,h) = , 5.29 

zd       v0 

46 



-*-   2h   •*- 

Q. 
© 
Q 

z=d 

**»*******«*MIM»»"4^W*****:¥***W*^«*WW^ Z—Zr 

z=z" 
reflector 

FIG. 5.2. Layer model. The gray shading denotes the target layer for velocity analysis. 

g2{x,h) = 
h2 + z2(z-z0)

2-{d-zQ)
2 

2v0 

From the above two equations, I have 

,    M      (z - z0)
2 - (d - z0)

2 

92^k) = 2(73rf) 9i(x,h). 

(5.30) 

(5.31) 

This means that the coefficients in equation (5.12) are proportional for all image locations 
and all offsets, so that I cannot solve for Ai and A2 independently. Thus, I have the 
following conclusion: The parameters Ai and A2 cannot be determined simultaneously if 
only one reflector segment is used in the velocity-analysis process. 

This conclusion shows that one should avoid solving for Ai and A2 at the same time 
unless well-separated reflector segments are used for velocity analysis. 

If the parameter A2 is given (i.e., <5A2 = 0), then equation (5.13) is simplified to 

«*<*.*)-(£ + l)^A.. (5.32) 

When <5Ai is small, z(x,h) « z*. Therefore, for given two offsets /i2 and h\ (h2 > hi), 
the difference of imaged depths from these two offsets is 

z(x,h2)-z(x,h1) = 
h\ h\ 

(Z*)2        (Z*)2J        V0 

z*-d 
<5Aj. (5.33) 
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i.e., 

Az = z(x, h2) - z(x, h) = ^"^f"^^' (5-34) {z rv0 

The above equation shows that the error in Ai is proportional to the thickness of the block 
layer, which is consistent with results of equation (3.34). When there is a thin layer, the 
velocity estimation for this layer is often unreliable, so I conclude that migration-based 
velocity analysis cannot handle thin layers. 

Similarly, if the parameter X% is given (i.e., <5Ai = 0), then 

(hl-h*)(z*-d)(z* + d-2z0) 
AZ ~ 25=55S     2' (      } 

The above equation shows that the error in A2 is determined not only by the thickness 
of the block layer but by (z* + d)/2 — ZQ—the difference between the central depth of the 
block layer and the reference depth ZQ. 

There are two kinds of depth errors: bz and Az. 6z is the difference between the true 
depth and the imaged depth, which reflects migration error due to the velocity error; Az 
is the difference between the imaged depths from different offsets, i.e., residual moveout. 
The ratio of these two depth errors is given by equations (5.32) and (5.34), 

bz    h2 + (z*)2 

■>m*; = W=tk- (5-36) 

The ratio 7 indicates the depth error of migration due to the error in migration residual 
moveout. The bigger the value of 7 is, the larger error of migration may result from 
the error in residual moveout. Equation (5.36) shows that increasing the ratio of offset 
to reflection depth will be helpful to reduce the migration error, although this is a well- 
known statement. 

For a general case, it is difficult to obtain analytical representations for the <7,'s. 
However, I can calculate the <7,'s numerically, as described above, and use these values to 
estimate the velocity error. Specifically, if there is only one parameter, equation (5.20) 
gives a direct error estimation, 

|<5A|< 
E£iEr«ifaiA)-F02. 

(5.37) 

where the Cauchy-Schwarz inequality has been used. 

5.3    Simple-Iteration Approach 

The velocity inversion essentially is a nonlinear process. By using the perturbation 
method, I obtain a linear equation (5.19) to update velocity iteratively. The efficiency of 
this linearized iteration depends on the initial guess of velocity and the stability of velocity 
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updating. Actually, these problems, initial guess and stability, are related. The less the 
stability is, the better the initial guess that is required. The stability of equation (5.21) 
depends on the noise level in the data and the complexity of structures in the overburden. 
For example, equation (5.21) trends unstable when a thin layer structure exists. In order 
to obtain a convergent solution, I use the so-called simple-iteration algorithm decribed 
below as a supplement to the perturbation method. Here, I assume that the velocity is 
constant layered. 

If I view residual moveout Az, as a function of migration velocity v, then the true 
velocity v* is the one for which 

Az(v) = 0. (5.38) 

Also, from equation (5.34), I conclude that Az is positive when v > v* and Az is 
negative when v < v*. Based on this fact, one proceeds with the following simple- 
iteration algorithm to determine the true layer velocity as follows: 

(1) Choose two initial velocities v\ and v2 such that 

Az(vi) < 0, Az(v2) > 0. 

(2) Compute a new velocity by weighting the initial velocities as follows: 

Az(v2) Az(vi) 

Az(v2) - Az(vi)        Az(vi) - Az(v2) 
v      ' 

(3) If Az(v3) = 0 (or smaller than a given precision), the iteration will stop, with v3 

the desired velocity. If Az(v3) > 0, v3 replaces v2 in step (1); otherwise, if Az(v3) < 0, 
i>3 replaces vi and go to step (2). 

During the iteration, the true velocity v* always is between v\ and v2, and the 
deviation of v\ and v2 decreases monotonically, so the convergence of this iteration is 
guaranteed as long as the model is well approximated by constant-velocity layers. 

5.4    Some Extensions 

It is straightforward that formulas in section 4.1 are extended from the common 
offset case to the common shot case, because I did not use the special properties of 
common offset gather in my derivation. The only difference is, traces in a CIG for the 
common shot case are organized in accordance with shot positions instead of the source- 
receiver offsets. Now I will discuss the extension of these results to the 3-D case and 
converted waves. 

5.4.1    3-D case 

The derivation in 3-D is the same as that in section 4.1.1, except for replacing 
location scalars by location vectors and replacing offset scalars by offset vectors.   For 
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example, equation (5.8) will be rewritten as 

g(x,h) = 
drs     drr 

dX     dX 
v(x;X) 

cos 0S + cos 9r 
(5.40) 

Here x = (3:1,0:2), and h = (^i,^2) have the same meaning as that in section 2.3.  In 
addition, the linear velocity function will depend on four parameters: 

v(x, z) = v0(x, z) + Ai + X2(z - z0) + Xz(xx - xXQ) + X4(x2 - x20), (5.41) 

where v0 is a background velocity and (xio, £20, z0) is a reference point. 
Theoretically, the velocity analysis approach in this chapter will be suitable both 

to the 2-D and to the 3-D case. However, this approach certainly encounters more 
computational difficulties in the 3-D case. Two issues are (i) how one measures residual 
moveout efficiently, and (ii) how one picks the imaged interface in the migrated data for 
building a macro model. Hopefully, these difficulties will be solved with development of 
3-D data processing and visualization. 

5.4.2    Converted waves 

With some work, the formulas in Section 4.1 can be extended to converted waves. In 
each expression, there is no difference between imaging equations for converted waves and 
those for non-converted waves. When the perturbation method is applied to converted 
waves, one should use different parameters to characterize P-wave velocity vp, and S-wave 
velocity u$, even within a same block. 

With no loss generality, I consider a P-S refection and show how to modify some 
formulas in section 4.1.1. Suppose that A is a parameter to describe vs; then, compared 
to equation (5.5), I have 

dr, cosO, drr COS0r 

dz      vP{x;Xy dz      vs(x;X)' 

Therefore, compared to (5.8), the function g has a modified representation, 

(5.42) 

g(x,h) = 
"dX 

Here I use the fact that 

Parallel to equation (5.23), I have 

drr 

lx 

cos9s 

yP(x;X) 

dr, 

+ COS ör 

vs(x; A)_ 
(5.43) 

dX 
= 0. 

JLöX VS{X;X)I 

dL, (5.44) 

where L is the raypath from the receiver to the image point x. 
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5.5    Summary 

Perturbation methods are general approaches to solving nonlinear mathematical 
problems. Based on perturbation methods and the imaging equations, I derived a rela- 
tionship between residual moveout and residual velocity that has no limitations on reflec- 
tor dip, offset or velocity distribution. The proposed algorithm estimates the update in 
velocity by computing a derivative function of imaged depths with respect to velocity in 
a general background medium context. This formula is more accurate than conventional 
formulas based on hyperbolic residual moveout when the medium has strongly lateral ve- 
locity variations. From this point I have revised the conventional RCA approaches. With 
a proper modification, the formulation here is also suitable to the 3-D case, converted 
waves, and even anisotropic media. However, for anisotropic media, one requires more 
parameters to describe a velocity distribution, so the equation corresponding to (5.19) 
will be underdetermined if only one component of residual moveout is used. In any 
case, the methodology here provides a basis for developing computational techniques of 
velocity analysis in anisotropic media. 
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Chapter 6 

ITERATIVE APPROACH: COMPUTER IMPLEMENTATION 

To demonstrate the effectiveness and the efficiency of the velocity analysis techniques 
in Chapter 5, I present some numerical examples for common-offset experiments. The 
experiments include synthetic data, physical-tank data, and Marmousi data. For these 
experiments, I use the Kirchhoff integral to implement prestack depth migration (Liu, 
1993). The layer-stripping procedure for velocity analysis can be stated as follows: 

• begin from the first block 

1. estimate velocity parameters iteratively 

(a) migrate with an initial guess of velocity; 
(b) sort the migrated data into common image gathers; 

(c) measure imaged depths and evaluate the derivative function; 
(d) update velocity by using the perturbation formula; 

2. image velocity interface by using corrected velocity 

• repeat step 1 and 2 for next block 

When velocity and velocity gradients are estimated simultaneously in one block, the 
iteration tends to be unstable, as explained in the previous chapter. To overcome this 
difficulty, it is preferable to estimate velocity first. This estimation will yield an averaged 
velocity and give a better initial guess for the velocity distribution in this block. 

6.1    Synthetic Data 

The first example is synthetic data generated by the Kirchhoffintegral. The velocity 
model shown in Figure 6.1 consists of six blocks. The velocity function in each block is 
constant or linear. Synthetic seismic traces are generated from this model, with five 
offsets ranging from 100 meters to 900 meters. Two of the common offset gathers are 
shown in Figure 6.2. 

The velocity analysis process is outlined as follows: 
In the first layer, the initial guess of velocity is 1500 m/s, with an error of 30 percent. 

Structural images are distorted in the migrated data using this erroneous velocity, shown 
in Figure 6.3. Two common image gathers of the migrated data also indicate that the 
initial guess is incorrect, shown in Figure 6.4. The imaged depths are measured at these 
two image locations for velocity updating. After two iterations, the corrected velocity is 
2004 m/s, while the true value is 2000 m/s. 
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In the second layer, there are two parameters used in the velocity distribution: a 
constant velocity and a vertical constant gradient. The initial guess takes 2004 m/s that 
is the estimated velocity in the first layer. Four common image gathers of the migrated 
data, shown in Figure 6.5 indicate that the first layer velocity in the initial guess is correct, 
but the deeper layer velocities are not. The imaged depths are measured at these four 
image locations for velocity updating. If this initial velocity is directly used to estimate 
the velocity constant and vertical gradient, the iteration will be divergent. Therefore, 
I only estimate the velocity constant in the first step. The updated velocity is 2420 
m/s that gives a better approximation to the true velocity. In the second iteration, the 
two parameters of velocity function are updated simultaneously. The corrected velocity 
function is 

v(z) = 2490 + 1.01(2 - 1000) = 1480 + 1.01* m/s. 

The true velocity function is v(z) = 1500 + 1.0z m/s. 
In the left third layer, there are three parameters used in velocity distribution. The 

initial guess is 
1480 + 1.012 = 2490 + 1.01(2 - 1000) m/s, 

which is the estimated velocity in the second layer. Three common image locations are 
used for updaing velocity: 900, 1200 and 1500 m. After one iteration, the corrected 
velocity is 

v(x, z) = 2490 + 1.57(2 - 1000) - 0.15s = 920 + 1.57* - 0.15s m/s. 

The true velocity is v(x, z) = 1000 +1.5* — 0.2s m/s. Despite the error in the lateral gra- 
dient, the stopping criterion is met since the difference of the imaged depths is apparently 
zero. Therefore, iteration ceases. 

In the right third layer, there are two parameters used in velocity distribution: 
constant velocity and constant vertical gradient. The initial guess takes 

1480 + 1.01* = 2490 + 1.01(2 - 1000) m/s, 

which is the estimated velocity in the second layer. Three common image locations are 
used for updating velocity: 2550, 2850 and 3150 m. After one iteration, the corrected 
velocity is 

v(x, z) = 2490 + 1.55(2 - 1000) = 940 + 1.552 m/s. 

The true velocity is v(z) = 1000 + 1.5* m/s. 
In the fourth layer, the velocity is a constant. The initial guess is v = 4000 m/s. 

Five common image locations are used for updating velocity: 1500, 1800, 1950, 2100 and 
2400 m. After two iterations, the corrected velocity is 3534 m/s, while the true velocity 
is v = 3500 m/s. 

The final velocity model estimated through velocity analysis is shown in Figure 6.6. 
Flat residual moveouts at common image gathers, shown in Figure 6.7, indicate correct- 
ness of the estimated velocity. With this velocity model, migration is implemented and 
shown in Figure 6.8 which is close to the migration result with the true velocity, shown 
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in Figure 6.9. 

Table 6.1. Test for gx. The unit of offset and depth is m/s 
Offset Imaged depth Numerical g\ True gx 

100 370 0.249 0.251 
300 360 0.278 0.282 
500 330 0.345 0.346 
700 290 0.476 0.475 
900 210 0.773 0.783 

Also, I test the computation of gx in the first layer. The numerical g\ is computed 
from the ratio of the amplitudes in the Kirchhoff migration outputs. Then I compare 
the numerical gx with the true value calculated in equation (5.29). In this test, v0 = 500 
m/s and d = 0. The result listed in Table (6.1) shows that the numerical value of gx is 
accurate for all offsets. This validates the estimation technique based on the stationary 
phase principle. 

6.2    Physical-tank Data 

The input data is from a physical experiment on a tank model, provided to us by 
Marathon Oil Company. The real medium is three-dimensional, but can be approximated 
to a two-and-half dimensional model. Figure 6.10 shows one measured slice along the 
in-line direction. The data were 296 shots, each shot with 48 receivers. The shot point 
spacing is 24.38 m, and the receiver interval is 24.38 m. Five common-offset gathers are 
used for velocity analysis whose offsets are 268.2, 512.1, 755.9, 999.7, and 1243.6 meters. 
Two of them are shown in Figure 6.11. The first shot point is at x = 0. For each offset, 
there are 256 shots and receivers. The time sampling interval is 4 ms; the total time is 2 s. 
The inversion output spans the ranges x from 61 to 6949 m and z from 0 to 3658 m. In this 
example, the "true" velocities do not exist, since the model is not perfectly two-and-half 
dimensional. Migration velocities are sought such that residual moveout is minimized; 
i.e., migration velocities yield the best stacking effect for the migrated data. The property 
that the model consists of constant-layered velocities allows use of the simple-iteration 
method in section 5.3 to update velocity. Velocity analysis is done through the fifth layer, 
and the first four ones are shown in Figure 6.12. The results are as follows: 

(1) In the first layer, the iterative values of a are 2438, 3962, 3309, 3570; the 
measured value is 3581. 

(2) In the second layer, the iterative values of c2 are 3570, 5182, 4779; the measured 
value is 4801. 

(3) In the third layer, the iterative values of c3 are 4779, 7315, 6681; the measured 
value is 6831. 
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(4) In the fourth layer, the iterative values of c4 are 6681, 3962, 4869; the measured 
value is 4801. 

(5) In the fifth layer, the iterative values of c5 are 4869, 9144, 5812, 6234; the 
measured value is 6066. 

After velocity analysis, a velocity model is obtained that consists of constant veloc- 
ity layers and interfaces, shown in Figure 6.13. The stacked migrated data using this 
estimated model is shown in Figure 6.14. One can see clearly the steep dip on the third 
interface, the saw-tooth reflector on the fourth interface and the flat bottom reflector in 
this figure. In contrast, the poorly stacked migration section, shown in Figure 6.15, is 
obtained with the measured velocity model shown in Figure 6.10. The structural images 
are obviously distorted. Although these two velocity models look similar, the migration 
sections show significant differences. This fact implies that prestack migration is very 
sensitive to the velocity model and migration velocity analysis is essential for imaging 
complex structures. 

The velocity estimates by the simple-iteration use only one common image gather. 
In contrast, the perturbation method can use as many CIGs as possible for velocity esti- 
mation. Therefore, the perturbation method may give more accurate velocity estimates. 
Here, using the velocities estimated by the simple-iteration as an initial guess, I correct 
the velocity model in Figure 6.13 by the perturbation method. The updated velocity 
is shown Figure 6.16. The stacked migrated data using this velocity model, shown in 
Figure 6.17 gives slightly better images than the result in Figure 6.14. 

6.3    Marmousi Data 

The Marmousi data set is generated by using a two-dimensional acoustic finite- 
difference modeling program. The model contains many reflectors, steep dips, and strong 
velocity variations both in lateral and vertical directions (with a minimum velocity of 
1500 m/s and a maximum velocity of 5500 m/s), shown in Figure 6.18. The data set 
consists of 240 shots with 96 traces per shot. The initial offset is 200 m; both the shot 
and the receiver spacings are 25 m. The first shot is at the lateral position 3000 m. 
Here 19 of common-offset data gathers are used for velocity analysis. The selected offsets 
range from 200 m to 2000 m with spacing 100 m. The minimum-offset gather is shown 
in Figure 6.19. 

During the velocity analysis process, I assume that the velocity field is a macro 
model and that the velocity distribution is a linear function in each block. Velocity 
analysis results surely depend on what kind of migration algorithm is used. There are 
two commonly used approaches to calculate traveltimes in Kirchhoff migration: finite 
differencing and ray tracing. Compared to ray tracing, the finite differencing approach is 
easier to code and more efficient to implement, but fails to correctly image complicated 
structures when multiple arrivals exist (Geoltrain and Brae, 1993). 

Here, the finite differencing is initially used in the migration implementation for 
velocity analysis in the area where the first arrivals carry the major energy. The estimated 
velocity model is shown in Figure 6.20. In the central bottom parts, a paraxial ray tracing 
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algorithm is used to implement Kirchhoff migration.  In this approach, the traveltime 
corresponding to the major energy is chosen when multiple arrivals exist. 

Using the Kirchhoff migration algorithm by paraxial ray tracing, velocity analysis 
is done through the central bottom parts of the Marmousi model. The updated velocity 
model, shown in Figure 6.21, consists of 19 blocks. In each block, the velocity distribution 
is a constant or linear function of the depth. Comparison of the estimated velocity model 
to the true one at three lateral locations is shown Figure 6.22. One can see that the 
estimated velocity matches the true model well except for thin layers. In fact, from the 
sensitivity analysis in Chapter 5, velocities in these thin layers cannot be determined 
well. The stacked migration section using the velocity model in Figure 6.21 is shown in 
Figure 6.23. Compared to the migration result using the true velocity model, shown in 
Figure 6.24, Figure 6.23 gives an acceptable structural image even in the central bottom 
parts, which indicates the capability of this migration velocity analysis approach for 
handling complex structures. The subsurfaces are well imaged except for some detailed 
features in the central bottom parts. Some blurry image in the central bottom parts 
may be caused from missing high velocity zones. Figure 6.18 shows that the real velocity 
contains several small high-velocity zones in the central parts. These high-velocity zones 
do not appear in Figure 6.21 because of the limitations of velocity analysis and the 
resolution of migration imaging. 

Selected common image gathers from migrated data using the estimated model are 
shown in Figures 6.25, 6.26 and 6.27 which represent the left, central and right parts 
of the model respectively. Flat residual moveouts in Figures 6.25, 6.27 and the upper 
part of Figure 6.26 indicate the correctness of the estimated velocity in these areas. The 
bottom part of Figure 6.26 shows incoherent signals that affect the accuracy of velocity 
estimation in this particular area. Notice that, at the same common image gathers (see 
Figure 6.28), migrated data using the true velocity also contain obvious incoherency 
in residual moveouts, although the stacked section shows a good image. This example 
demonstrates that for an extremely complex structure it is very difficult to identify the 
correct velocity model based on the criterion of kinematic coherence. 

6.4    Summary 

Imaging complex structures (such as the Marmousi data) requires powerful prestack 
depth migration algorithms as well as advanced velocity analysis techniques. The per- 
turbation method in this thesis provides a useful tool for updating a velocity model by 
matching a criterion based on prestack information, which is one of the key elements in 
velocity model determination (Versteeg, 1994). In order to obtain a more satisfactory 
velocity analysis result for a complicated model, as Versteeg concluded, one also needs 
related geologic information as constraints. 
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FIG. 6.1. The true velocity model. The velocity unit is m/s. 
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FIG. 6.2. Synthetic data: (a) with offset of 100 meters and (b) with offset of 900 
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FIG. 6.3. Prestack migration with the initial constant velocity. The offset is 100 meters. 
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FIG. 6.4. Two common-image gathers from the migrated data with the initial velocity. 
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FIG. 6.5. Four common-image gathers from the migrated data with the initial velocity. 
The numbers 1, 2, 3, etc, correspond to outputs of different CIGs. 
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FIG. 6.6. Final estimated model from velocity analysis. 
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FlG. 6.12. Velocity analysis on the physical-tank data. The measured velocities: 
ci = 3581, c2 = 4801, c3 = 6831, c4 = 4801. 

64 



2 4 
Midpoint (km) 

FlG. 6.13. Estimated velocity model from velocity analysis. 
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FlG. 6.14. Five-offset stacked migration output for the physical-tank data, AGC 
applied to the stack. The input velocity model is shown in Figure 6.13. 
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FlG. 6.15. Five-offset stacked inversion output for the physical-tank data, AGC applied 
to the stack. The input velocity model is shown in Figure 6.1. 
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FIG. 6.16. Estimated velocity model from velocity analysis by perturbation. 
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FIG. 6.17. Five-offset stacked migration output for the physical-tank data. The input 
velocity model is in Figure 6.16. 
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FIG. 6.18. The Marmousi velocity model. The darker shading denotes higher velocity. 
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FlG. 6.19. The minimum-offset Marmousi data. The offset is 200 meters. 
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FIG. 6.20. The estimated velocity model using the first-arrival operater. 
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FlG. 6.21. The updated velocity model using the paraxial ray tracer. 
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FlG. 6.22. Comparison of the true velocity model to the estimated one. The dark curve 
denotes the true velocity and the gray denotes the estimated velocity. The top figure is 
at location x=8 km; the middle, at location x=6 km; the bottom, at location x=4 km. 
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FlG. 6.23. 19-offset stacked migration output for the Marmousi data. The input 
velocity is one in Figure 6.21. 
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FlG. 6.24. 19-offset stacked migration output for the Marmousi data. The true velocity 
is used. 
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FIG. 6.25. Ten common image gathers. 19 offsets in each CIG. The image location 
ranges from 4 km to 4.25 km. 

FIG. 6.26. Ten common image gathers. 19 offsets in each CIG. The image location 
ranges from 6 km to 6.25 km. 
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FlG. 6.27. Ten common image gathers. 19 offsets in each CIG. The image location 
ranges from 8 km to 8.25 km. 

FlG. 6.28. Ten common image gathers from migrated data using the true velocity. The 
image location ranges from 6 km to 6.25 km. 
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Chapter 7 

CONCLUSIONS 

Prestack depth migration provides a powerful tool for knowing if a migration veloc- 
ity is acceptable, because of its high sensitivity to a velocity model. Moreover, residual 
moveout in migrated data can be used to update an unacceptable velocity. In this thesis, 
I studied the relationship between residual moveout and migration velocity in a general 
context and derived analytical formulas to update velocities. For handling complex me- 
dia, my formula estimates the update in velocity by computing a derivative function of 
imaged depths with respect to velocity in a general background medium context. This 
formula is more accurate than conventional formulas based on hyperbolic residual move- 
out when the medium has strongly lateral velocity variations. In this sense, I made 
contributions to theory and applications of migration velocity analysis. However, some 
questions remain with regard to efficient application of migration velocity analysis. 

1. Efficient and accurate migration algorithms 
In order to handle complex structures, repeated prestack migration is unavoidable 

in velocity updating. Therefore, the efficiency of migration velocity analysis largely de- 
pends on which prestack migration algorithm is used. In general, integral-type migration 
approaches, such as Kirchhoff or Gaussian beam, are preferable, because those methods 
can implement either common shot gathers or common offset gathers, and have the flex- 
ibility to image the targeted structures in which velocity is being estimated. Besides the 
efficiency, the accuracy should be considered as well. For imaging complex structures, a 
migration algorithm should be designed to handle turning waves, and multivalued trav- 
eltimes. 

In the Kirchhoff integral, traveltime calculation by ray tracing or finite differencing 
dominates the total cost. Finite differencing only calculates the first arrival traveltime, so 
this approach works fast but fails in calculation of multivalued traveltimes. Ray tracing 
by a shooting method may handle multivalued traveltimes, but the current algorithm is 
extremely time consuming (Sun, 1992). The paraxial ray method shows advantages in 
handling multivalued traveltimes and caustics. This method uses information from the 
standard dynamic ray-tracing method to extrapolate traveltimes and ray amplitudes at 
receivers in the vicinity of a central ray. In general, the traveltime calculation by the 
paraxial ray tracer is more costly than by finite differencing. 

The cost of traveltime calculation in Kirchhoff migration may be reduced by gen- 
erating a table of traveltimes, if the computer memory and disk space are allowable. In 
this way, the traveltime calculation at one location is implemented only one time, so the 
cost of traveltime calculation makes up relatively small portion of the total migration cost. 
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2. Interactive computational techniques 
In practice, a velocity estimation procedure must involve interactive computational 

techniques, which is especially important in the 3-D case. During velocity analysis, one 
needs good computer graphics tools to pick imaged depths and to build and visualize 
the velocity model. Because of the limited resolution of velocity analysis, mathematical 
estimation of velocity models may be unreasonable and non-unique. By means of com- 
puter graphical software, one can interpret and modify the velocity model based on some 
geological knowledge and information from other sources. 
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Appendix A 

DEPTH VARIATION TO VELOCITY 

The purpose of this appendix is to show that the change in image depth z, with 
respect to changes in velocity is positive for downward propagating waves and negative 
for upward propagating turned rays. Suppose that migration velocity has a variation 
6c = 6c(x). For a fixed horizontal location x, the imaged depth z and the surface 
position parameter £ are functional of migration velocity. One takes the total variation 
in equation (2.5) with respect to 6c; then 

drs     drr 

ae + at 8£ + [6cTa + 6cTr] + 
dra     drT 

dz      dz 
dt 

(A.l) 

Here 8C is used to denote the partial functional variation from 6c. For example, 6cra 

means the variation of r, related to changing c for fixed x and f. Using equation (2.6) 
to elimate dra/d^ and drr/d£ yields 

dra     drr 

dz      dz 
6z = -[^(aj,, *) + 6crr(xs, x)]. 

The derivatives of traveltime with respect to depth can be represented by 

drs(xs,x) _ cos(^) dTr(xr,x)     cos(0r) 
dz c(x) dz c(x) 

where 9S or 0r are the angles between the ray direction from the source or the receiver, 
respectively, and the downward pointing vertical direction at x, or, equivalently, the angle 
of incidence from the source or receiver, respectively, measured to the upward vertical 
direction. I then rewrite 6z as 

6z = 
C(X)[8CTS(XS, x) + 6crr(xs, x)] 

cos(6a) + cos(6r) 
(A.2) 

An increase in c—6c positive—always results in a decrease in the traveltimes—6cTs+6crr— 
negative, so that the numerator on the right is negative. More precisely, an increase in 
the averaged c along raypaths does the same work. In addition, 

cos(09) + cos(6r) = 2 cos 
6. + 9r 

cos 
Br — 9., 
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In this equation, 0r — 9S is the angle between the two raypaths, so \6T — 9s\/2 < 90°, i.e., 

cos(^)>0. 

(0r+Os)/2 is the angle between the normal of reflection and the up-vertical. For downward 
propagating waves, (0r + 0s)/2 < 90°, so 

COS [-2-) > °; 

for upward propagating waves (turned waves), (6r + 0s)/2> 90°, so 

cos \-T-) < °- 
Thus, when taking account of the minus sign on the right side of the equation (A.2), 

I conclude that the variation in the imaged depth with respect to increment in the 
propagation speed is positive for downward propagating waves and is negative for upward 
propagating (turned waves). This is true for any velocity distribution. 
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Appendix B 

RMO VELOCITY REPRESENTATION FOR V(Z) 

In this appendix, the representation of RMO velocity is derived for a laterally in- 
variant velocity medium and a reflector dip. 

From Taylor's expansion, 

(1 - j>V(<7))-3/2 = 1 + ^W + 0{p% (B.l) 

so that 

r «V)(l - p\\a))-^da = f v2da + |p2 f v4dcr = r>2
2 + \v\p\      (B.2) 

JO JQ I      J0 A 

and 

jT*(l -pW(o))-Wda = r*(l + \v\P\ (B.3) 

Using equations (B.l) and (B.2), and the definition in (4.53), I obtain 

T^^SH*!«-^«™- (B.) 
Thus, the derivation of equation (4.55) is completed. 
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Appendix C 

LATERAL VELOCITY ANOMALY 

In this appendix, the representation of RMO velocity is derived for horizontal re- 
flectors and the medium with a lateral velocity anomaly. 

Suppose that reflectors are horizontal and the true slowness w(x, z) can be written 
by 

1 
w(x, z) = w{z) (1 + a{x, z)) = — (l + a(x, z)), 

V[Z) 
(C.l) 

where w(z) is a reference slowness and a(x,z) is a small perturbation.   The two-way 
traveltime t in the medium of w is represented by 

t(y,h) =2 f 
Jo 

w{a) 
ro  cos 9 

da, (C.2) 

where 6 is the angle of the ray path from the vertical, y is the midpoint. Because the 
reflectors are horizontal and the medium velocity is a depth-dependent function plus a 
small lateral perturbation, I conclude that the reflection point equals approximately the 
midpoint, i.e, x = y. Under the assumption of a small perturbation, the ray path in the 
medium of w{x, z) is the same as that in the medium of w, so the two-way traveltime in 
the medium of w(x, z) is 

t(v, h) = 2 r ^f^äa = f(A, „) + 2 / fÜSäfl *1 (C.3) 
Jo      cos» Jo      cosy     via) 

where (f, a) is a point on the ray path and 

f(c) = y+      t&n 6ds. (C.4) 

In particular, £(0) = h—y. Taking a second-derivative with respect to h in equation (C.3) 
gives 

dH(h,y) 
dh? 

Furthermore, 

d2 

dh2 cos 6 
= 

dH{h,y) 

h=0 dh2 + 2 d2 

h=0 

r— 
k dh2 

a(t,v) 
COSÖ 

da 
(C.5) 

d2a   1 
dh2 cos 6 

+ 2lThfh(^)+a^w{^e)-        (C6) 
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The fact that 9 = 0 at h = 0 gives 

d_ 
dh (—)\   -(■ 

sin9 89" 
cos2 9 dh, 

= 0, 
/i=0 

and 
cos# 1^=0= 1. 

Using equations (C.7) and (C.8), I simplify equation (C.6) to 

d2 

dh2 cos 9 

d2a + 
/i=0 

a^a)w(^ö) h=Q 

Notice that £ is a function of h, so it follows from the chain rule that 

dh2 ~ d£2 \dh)  + d£dh2' 

From (C.4), £ — y is an odd function of h; hence 

This result and equation (C.10) give 

0*t 

h=0 

d2(Z - y) 
dh2 dh2 

0) give 

d2a d2a  (d£ 
dh2 

h=0 ' dy2  [dh 

= 0. 
h=0 

h=0 

Here I use the fact that £ = y at h = 0. From 9 = 0 at h = 0, and 

H sin d2  f   1    _ 
dh2 \cos9) ~ {cos29dh2)~r    cos39    [dhl  ' 

in9 d29\     1 + sin29 fd9' + 

I obtain 
d2   /   1   \        _ /30 

d/i2 Vcos0/|fc_o      \d/i 
/i=0 

In order to do further calculations, I introduce the slope parameter 

sin# 

which is independent of a; then 

fj(cr)' 

cos0 = y 1 — (up)2. 

(C.7) 

(C.8) 

(C.9) 

(CIO) 

(C.ll) 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

82 



From this result and equation (C.4), 

£{<T)=V+ f   i    VP       ds, J<T   yjl - (vp)2 

and 

These formulas imply that 

:ds. 

(C.17) 

(C.18) 

dt ds, 
dp~ L [1 - (öp)2]3/2 

dh _  rz v 

dv~~ Jo Il-(vr"™/0    ' [i - {vp)2fi2 

d0_ _    v 

dp     cos 6' 

(C.19) 

(C.20) 

(C.21) 

Equations (C.19) and (C.20) yields 

dh h=0 

difdh 
dp \dp 

-l 

/i=0 

J'vds ^2f*vds 

JQ
zvds      t0v

2(z) ' 
(C.22) 

where vs is the asymptotic stacking velocity of v and t0 = t(y,0); equations (C.20) 
and (C.21) yield 

d9_ 
dh /i=0 

de_fdK 

dp \dpt 

-r 
v(a)        2v(a) 

h=0 
J0

zvds      t0v
2(z) 

(C.23) 

Substituting equations (C.12), (C.14), (C.22) and (C.23) into equation (C.9), I obtain 

d2   (a(£,a)^ «9     /„«-,.x2 

dh2 \  cos0 
d2a  (2S'vdsY       ,      ,4v2(a) ln     x 

„-wiml+^m-    <c-24) 

Substituting equation (C.24) into equation (C.7), yields 

dh2 
/i=0 

am 
dh2 

8       t' 

l=o     ?QV
2
{Z) h 

d2a (H Ms)2     av2{a) 

dy2    v2(z) v2(z) 
da 

v(a) 
(C.25) 

The asymptotic stacking velocity vs and vs are calculated by 

w*(y,z) = 
vt{y,z) 

l 

4 
t(y,h) 

d2t(y,hY 

dh2 (C.26) 
h=0 
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ws(z) = 
V2s(z) 

1 
4 

t(y, h) 
dH{y,h)' 

dh2 (C.27) 
h=0 

Using equations (C.3), (C.26),  (C.27), and notation t0=t(y,0), I obtain 

t(y,o) 
d2t(h,y) 

dh2 -t(y,0) 
d2i(h,y) 

h=0 dh2 
t(y,0) 

= 4<(y,*)-4<(z) 
h=o ro 

= 4w2(y, z) - 4w2(z) - ^M [' a(y, o)±- (C.28) 
U     Jo via) 

da 

V) 
that is, 

2w2 

w2(y,z)-w2
3(z) = ^ I a(y,a)rr^- 

to   Jo v(a 
da      t(y,0) dH 

dh2 

dH 

h=0 dh2 
h=0. 

(C.29) 

When a is small, t is an approximation of t. By ignoring the second-order perturbation, 
I obtain 

+(■,, (W r pß+ ffi+       i      T. r p2+ &+       i 
(C.30) 

t(y,0) 
4 

'dH 
dh2 

dH 

h=0- 

_t0 

4 

'dH 
dh2 

dH 

h=o     dh2 
h=0. 

d2a (J*vds)2     av2(a) 
dy2    v2(z) v2(z) _ 

Using equations (C.25), (C.29) and (C.30), I obtain 

2/     N      -2/ x      1w2  fz     da 2     rz 

w2{y,z)-w2
s{z) = ^A      «-_ + _/ 

t0   Jo     v(a)     tQvj Jo 

Notice that y = x, so the above equation becomes 

which is the result I stated in equation (4.65). 

da 
v(a)' 

da 

(C31) 

(C.32) 
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Appendix D 

EQUATION SYSTEM FOR PERTURBATION 

In this appendix, a linear equation system is derived for parameter estimation in the 
perturbation method of Chapter 5. 

By using the matrix and vector notations in equation (5.18), I obtain 

1 AiW   =   -TAz) M 
mi=i 

1      m     n 

]=l«=1 

1 

and 

(D.l) 

(D.2) 

= E(AA,#). 

zf'+Azf1 -iW+AiW   =   zf'-iW + Azf-AiW 

Define a quadratic objective function 

K    m    „ 

/(AA) = E E (*jfc) + A*j* > - *<*) + Az<*>)  . 
k=\j=l 

Thus, finding the minimum of /(AA) is equivalent to setting its gradient with respect to 
AA equal 0, i.e., 

»'<**> - , = 1,2,...,,, (D.3) 
3AA, 

= 0 

By using equation (D.2), 

K    m 

/(AA) = EE 
fc=lj=l 1=1        v '. 
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The derivatives computed from function are 

0/(AA)   =   of V1" 
0AA, tih 

K    m 

r-iW + tAA,.(9,!*'-#»)](^»-j<") 

Jfc=li=l v ' 

fc=ij=it=i      x y v y 
(D.4) 

The condition (D.3) implies that 

K    m    n 

E E E AA, U? - W) (j& - Aw) = - E E (#' - iw) (iff - #'); 
fc=li=l »=1 v >  v ' fc=lj=l V ' 

i.e., 

U=l 

K 

A\ = -Y,Uk\ (D.5) 
Jb=l 

Thus, I completes the verification that the solution of equation (5.21) is just the 
minimum of the left side in (5.20). 
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Appendix E 

DERIVATIVE FUNCTIONS IN SIMPLE CASES 

In this appendix, the representation of derivatives of imaged depths with respect to 
velocity and velocity vertical gradient is derived for a horizontal reflector and a constant 
background velocity. 

From equation (5.23), 

where L is the raypath. Here, to simplify notation, I suppose that all derivatives with 
respect to A are evaluated at Ai = A2 = 0. When the background velocity is a constant 
v0 as in equation (5.24), equation (E.l) becomes 

dr 1     t*  _7dv(x,z') , . , 
aX        cos 6 Jo dX v     ' 

where 6 is the angle between the raypath and the vertical. For the velocity function in 
equation (5.28), if z > d, then 

dv(x,z') _ 
■*■> 

and 

if z < d, then 

Therefore, 

and 

9v(x, z')       , 
~dx~r-z-z°; 

dv(x, z') _ dv(x, z') _ 

dX\ dX2 

dr 1     r 1  . , 1   z-d 

dr 

— = —— I' Uz> = -J-2-ZA (E 3) 
dXi cos 8 Jd v$ cos0   v$   ' ' 

=   * ri^dJ =   i('-*r-v-»r,       (E4) 
aA2 cos 0 Jd      vfi cos 9 2v§ v      ; 

Because the reflector is horizontal, the ray paths from the source and the receiver are 
symmetric. I obtain 

z 

cost/. = COS0r =     , :. 

87 



Substituting the above formula and equations (E.3) and (E.4) into equation (5.13), yields 

h? + z2 z - d 
9i(x,h) = 

z2       v0 

h> + zHz-zQ)*-(d-z0f 
92(x,h) = — . 

Thus, I complete the verifications of equations (5.29) and (5.30). 
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